基于Matlab®算法的土壤液化对比分析:soiLique

IF 0.7 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY
E. Bekin, F. Ozcep
{"title":"基于Matlab®算法的土壤液化对比分析:soiLique","authors":"E. Bekin, F. Ozcep","doi":"10.15446/esrj.v25n3.86525","DOIUrl":null,"url":null,"abstract":"Soil liquefaction is one of the ground failures induced by earthquakes. Determining the safety factor and the settlements are the most common analyses to decrease liquefaction-induced failures and hazards. Scientists have suggested numerous empirical formulas to detect and mitigate liquefaction-based hazards, and they have been used over the decades. This study aims to present a user-friendly and interactive program for deterministic soil liquefaction analyses. The algorithm presented in this study, soiLique, is the first MATLAB® program, including a graphical user interface that provides the deterministic liquefaction analysis with the computation of parameters propounded with the formulas. One of the advantages of soiLique is that it allows picking the physical property of every layer (i.e., fine or coarse), which provides dealing with liquefaction prone layer(s) directly when necessary. Not only can one calculate parameters regarding soil liquefaction with the help of this program, but one also can see graphically supported results. The robustness of soiLique is checked with another soil liquefaction analysis program, SoilEngineering, which was introduced by Ozcep (2010). Calculations were done separately using real SPT data and synthetic data such as VS measurements and CPT data. The real SPT data and synthetic VS data were used to compare soiLique and SoilEngineering (Ozcep, 2010). The present study presents an example of CPT data analysis but could not be used for comparison. Comparisons reveal that outputs of soiLique and results of SoilEngineering showed a good agreement.","PeriodicalId":11456,"journal":{"name":"Earth Sciences Research Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique\",\"authors\":\"E. Bekin, F. Ozcep\",\"doi\":\"10.15446/esrj.v25n3.86525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil liquefaction is one of the ground failures induced by earthquakes. Determining the safety factor and the settlements are the most common analyses to decrease liquefaction-induced failures and hazards. Scientists have suggested numerous empirical formulas to detect and mitigate liquefaction-based hazards, and they have been used over the decades. This study aims to present a user-friendly and interactive program for deterministic soil liquefaction analyses. The algorithm presented in this study, soiLique, is the first MATLAB® program, including a graphical user interface that provides the deterministic liquefaction analysis with the computation of parameters propounded with the formulas. One of the advantages of soiLique is that it allows picking the physical property of every layer (i.e., fine or coarse), which provides dealing with liquefaction prone layer(s) directly when necessary. Not only can one calculate parameters regarding soil liquefaction with the help of this program, but one also can see graphically supported results. The robustness of soiLique is checked with another soil liquefaction analysis program, SoilEngineering, which was introduced by Ozcep (2010). Calculations were done separately using real SPT data and synthetic data such as VS measurements and CPT data. The real SPT data and synthetic VS data were used to compare soiLique and SoilEngineering (Ozcep, 2010). The present study presents an example of CPT data analysis but could not be used for comparison. Comparisons reveal that outputs of soiLique and results of SoilEngineering showed a good agreement.\",\"PeriodicalId\":11456,\"journal\":{\"name\":\"Earth Sciences Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences Research Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15446/esrj.v25n3.86525\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences Research Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15446/esrj.v25n3.86525","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

土壤液化是地震引起的地面破坏之一。确定安全系数和沉降是减少液化引起的故障和危险的最常见分析。科学家们提出了许多经验公式来检测和减轻基于液化的危害,这些公式已经使用了几十年。本研究旨在为确定性土壤液化分析提供一个用户友好的交互式程序。本研究中提出的算法soiLique是第一个MATLAB®程序,包括一个图形用户界面,该界面提供确定性液化分析,并计算公式中提出的参数。soiLique的优点之一是,它可以选择每一层(即细层或粗层)的物理性质,从而在必要时直接处理易液化层。借助该程序,不仅可以计算有关土壤液化的参数,还可以看到图形支持的结果。土壤液化的稳健性通过Ozcep(2010)介绍的另一个土壤液化分析程序SoilEngineering进行了检查。使用真实SPT数据和合成数据(如VS测量和CPT数据)分别进行计算。实际SPT数据和合成VS数据用于比较soiLique和SoilEngineering(Ozcep,2010)。本研究提供了CPT数据分析的一个例子,但不能用于比较。比较表明,soiLique的输出与SoilEngineering的结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique
Soil liquefaction is one of the ground failures induced by earthquakes. Determining the safety factor and the settlements are the most common analyses to decrease liquefaction-induced failures and hazards. Scientists have suggested numerous empirical formulas to detect and mitigate liquefaction-based hazards, and they have been used over the decades. This study aims to present a user-friendly and interactive program for deterministic soil liquefaction analyses. The algorithm presented in this study, soiLique, is the first MATLAB® program, including a graphical user interface that provides the deterministic liquefaction analysis with the computation of parameters propounded with the formulas. One of the advantages of soiLique is that it allows picking the physical property of every layer (i.e., fine or coarse), which provides dealing with liquefaction prone layer(s) directly when necessary. Not only can one calculate parameters regarding soil liquefaction with the help of this program, but one also can see graphically supported results. The robustness of soiLique is checked with another soil liquefaction analysis program, SoilEngineering, which was introduced by Ozcep (2010). Calculations were done separately using real SPT data and synthetic data such as VS measurements and CPT data. The real SPT data and synthetic VS data were used to compare soiLique and SoilEngineering (Ozcep, 2010). The present study presents an example of CPT data analysis but could not be used for comparison. Comparisons reveal that outputs of soiLique and results of SoilEngineering showed a good agreement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Sciences Research Journal
Earth Sciences Research Journal 地学-地球科学综合
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ESRJ publishes the results from technical and scientific research on various disciplines of Earth Sciences and its interactions with several engineering applications. Works will only be considered if not previously published anywhere else. Manuscripts must contain information derived from scientific research projects or technical developments. The ideas expressed by publishing in ESRJ are the sole responsibility of the authors. We gladly consider manuscripts in the following subject areas: -Geophysics: Seismology, Seismic Prospecting, Gravimetric, Magnetic and Electrical methods. -Geology: Volcanology, Tectonics, Neotectonics, Geomorphology, Geochemistry, Geothermal Energy, ---Glaciology, Ore Geology, Environmental Geology, Geological Hazards. -Geodesy: Geodynamics, GPS measurements applied to geological and geophysical problems. -Basic Sciences and Computer Science applied to Geology and Geophysics. -Meteorology and Atmospheric Sciences. -Oceanography. -Planetary Sciences. -Engineering: Earthquake Engineering and Seismology Engineering, Geological Engineering, Geotechnics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信