{"title":"退化拟周期可逆映射不变曲线的存在性","authors":"Peng-Ruei Huang","doi":"10.11650/tjm/220201","DOIUrl":null,"url":null,"abstract":"In this paper we are concerned with the existence of invariant curves of quasi-periodic reversible mappings with higher order degeneracy of the twist condition under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small in the speed of function qε, rather than super exponential function.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Invariant Curves for Degenerate Quasi-periodic Reversible Mappings\",\"authors\":\"Peng-Ruei Huang\",\"doi\":\"10.11650/tjm/220201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are concerned with the existence of invariant curves of quasi-periodic reversible mappings with higher order degeneracy of the twist condition under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small in the speed of function qε, rather than super exponential function.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of Invariant Curves for Degenerate Quasi-periodic Reversible Mappings
In this paper we are concerned with the existence of invariant curves of quasi-periodic reversible mappings with higher order degeneracy of the twist condition under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small in the speed of function qε, rather than super exponential function.