退化拟周期可逆映射不变曲线的存在性

Pub Date : 2022-01-01 DOI:10.11650/tjm/220201
Peng-Ruei Huang
{"title":"退化拟周期可逆映射不变曲线的存在性","authors":"Peng-Ruei Huang","doi":"10.11650/tjm/220201","DOIUrl":null,"url":null,"abstract":"In this paper we are concerned with the existence of invariant curves of quasi-periodic reversible mappings with higher order degeneracy of the twist condition under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small in the speed of function qε, rather than super exponential function.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Invariant Curves for Degenerate Quasi-periodic Reversible Mappings\",\"authors\":\"Peng-Ruei Huang\",\"doi\":\"10.11650/tjm/220201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are concerned with the existence of invariant curves of quasi-periodic reversible mappings with higher order degeneracy of the twist condition under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small in the speed of function qε, rather than super exponential function.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在Brjuno–Rüssmann非共振条件下,具有扭曲条件的高阶退化的拟周期可逆映射的不变曲线的存在性。在证明中,我们使用了KAM理论的一个新变体,包含一个人工参数q,0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Existence of Invariant Curves for Degenerate Quasi-periodic Reversible Mappings
In this paper we are concerned with the existence of invariant curves of quasi-periodic reversible mappings with higher order degeneracy of the twist condition under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small in the speed of function qε, rather than super exponential function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信