退化拟周期可逆映射不变曲线的存在性

IF 0.6 4区 数学 Q3 MATHEMATICS
Peng-Ruei Huang
{"title":"退化拟周期可逆映射不变曲线的存在性","authors":"Peng-Ruei Huang","doi":"10.11650/tjm/220201","DOIUrl":null,"url":null,"abstract":"In this paper we are concerned with the existence of invariant curves of quasi-periodic reversible mappings with higher order degeneracy of the twist condition under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small in the speed of function qε, rather than super exponential function.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Invariant Curves for Degenerate Quasi-periodic Reversible Mappings\",\"authors\":\"Peng-Ruei Huang\",\"doi\":\"10.11650/tjm/220201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are concerned with the existence of invariant curves of quasi-periodic reversible mappings with higher order degeneracy of the twist condition under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small in the speed of function qε, rather than super exponential function.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220201\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220201","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在Brjuno–Rüssmann非共振条件下,具有扭曲条件的高阶退化的拟周期可逆映射的不变曲线的存在性。在证明中,我们使用了KAM理论的一个新变体,包含一个人工参数q,0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Existence of Invariant Curves for Degenerate Quasi-periodic Reversible Mappings
In this paper we are concerned with the existence of invariant curves of quasi-periodic reversible mappings with higher order degeneracy of the twist condition under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small in the speed of function qε, rather than super exponential function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Taiwanese Journal of Mathematics
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信