{"title":"级联提取极段滤波器的矩阵合成","authors":"Ping Zhao","doi":"10.1109/LMWC.2022.3186406","DOIUrl":null,"url":null,"abstract":"This letter proposes a direct matrix synthesis approach for filters with cascaded extracted-pole (EP) sections. The novel synthesis technique is based on the observation that an EP section is a special case of a singlet with a zero mainline coupling. With proper phase lengths inserted into a cross-coupled network, cascaded EP sections can be directly synthesized from the canonical wheel form by a sequence of elementary matrix operations. In this letter, the equation for the suitable phaselength is derived, and the matrix transformation strategy to synthesize cascaded EP sections is developed. Numerical synthesis examples are provided to validate the novel synthesis approach.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1383-1386"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Matrix Synthesis for Filters With Cascaded Extracted-Pole Sections\",\"authors\":\"Ping Zhao\",\"doi\":\"10.1109/LMWC.2022.3186406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a direct matrix synthesis approach for filters with cascaded extracted-pole (EP) sections. The novel synthesis technique is based on the observation that an EP section is a special case of a singlet with a zero mainline coupling. With proper phase lengths inserted into a cross-coupled network, cascaded EP sections can be directly synthesized from the canonical wheel form by a sequence of elementary matrix operations. In this letter, the equation for the suitable phaselength is derived, and the matrix transformation strategy to synthesize cascaded EP sections is developed. Numerical synthesis examples are provided to validate the novel synthesis approach.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1383-1386\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3186406\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3186406","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Matrix Synthesis for Filters With Cascaded Extracted-Pole Sections
This letter proposes a direct matrix synthesis approach for filters with cascaded extracted-pole (EP) sections. The novel synthesis technique is based on the observation that an EP section is a special case of a singlet with a zero mainline coupling. With proper phase lengths inserted into a cross-coupled network, cascaded EP sections can be directly synthesized from the canonical wheel form by a sequence of elementary matrix operations. In this letter, the equation for the suitable phaselength is derived, and the matrix transformation strategy to synthesize cascaded EP sections is developed. Numerical synthesis examples are provided to validate the novel synthesis approach.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.