一次两步——用曾氏方法进行GAN训练

IF 1.9 Q1 MATHEMATICS, APPLIED
A. Böhm, Michael Sedlmayer, E. R. Csetnek, R. Boț
{"title":"一次两步——用曾氏方法进行GAN训练","authors":"A. Böhm, Michael Sedlmayer, E. R. Csetnek, R. Boț","doi":"10.1137/21m1420939","DOIUrl":null,"url":null,"abstract":"Motivated by the training of Generative Adversarial Networks (GANs), we study methods for solving minimax problems with additional nonsmooth regularizers. We do so by employing \\emph{monotone operator} theory, in particular the \\emph{Forward-Backward-Forward (FBF)} method, which avoids the known issue of limit cycling by correcting each update by a second gradient evaluation. Furthermore, we propose a seemingly new scheme which recycles old gradients to mitigate the additional computational cost. In doing so we rediscover a known method, related to \\emph{Optimistic Gradient Descent Ascent (OGDA)}. For both schemes we prove novel convergence rates for convex-concave minimax problems via a unifying approach. The derived error bounds are in terms of the gap function for the ergodic iterates. For the deterministic and the stochastic problem we show a convergence rate of $\\mathcal{O}(1/k)$ and $\\mathcal{O}(1/\\sqrt{k})$, respectively. We complement our theoretical results with empirical improvements in the training of Wasserstein GANs on the CIFAR10 dataset.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Two Steps at a Time---Taking GAN Training in Stride with Tseng's Method\",\"authors\":\"A. Böhm, Michael Sedlmayer, E. R. Csetnek, R. Boț\",\"doi\":\"10.1137/21m1420939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the training of Generative Adversarial Networks (GANs), we study methods for solving minimax problems with additional nonsmooth regularizers. We do so by employing \\\\emph{monotone operator} theory, in particular the \\\\emph{Forward-Backward-Forward (FBF)} method, which avoids the known issue of limit cycling by correcting each update by a second gradient evaluation. Furthermore, we propose a seemingly new scheme which recycles old gradients to mitigate the additional computational cost. In doing so we rediscover a known method, related to \\\\emph{Optimistic Gradient Descent Ascent (OGDA)}. For both schemes we prove novel convergence rates for convex-concave minimax problems via a unifying approach. The derived error bounds are in terms of the gap function for the ergodic iterates. For the deterministic and the stochastic problem we show a convergence rate of $\\\\mathcal{O}(1/k)$ and $\\\\mathcal{O}(1/\\\\sqrt{k})$, respectively. We complement our theoretical results with empirical improvements in the training of Wasserstein GANs on the CIFAR10 dataset.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1420939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1420939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

摘要

受生成对抗网络(GANs)训练的启发,我们研究了带有附加非光滑正则器的极大极小问题的求解方法。我们通过使用\emph{单调算子}理论,特别是\emph{前-后-前(FBF)}方法来做到这一点,该方法通过第二次梯度评估来纠正每次更新,从而避免了已知的极限循环问题。此外,我们提出了一个看似新的方案,回收旧的梯度,以减少额外的计算成本。在此过程中,我们重新发现了一种已知的方法,与\emph{乐观梯度下降上升(OGDA)}相关。对于这两种方案,我们通过统一的方法证明了凸凹极小极大问题的新的收敛速率。导出的误差边界是根据遍历迭代的间隙函数。对于确定性问题和随机问题,我们分别给出了$\mathcal{O}(1/k)$和$\mathcal{O}(1/\sqrt{k})$的收敛率。我们通过在CIFAR10数据集上训练Wasserstein gan的经验改进来补充我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Steps at a Time---Taking GAN Training in Stride with Tseng's Method
Motivated by the training of Generative Adversarial Networks (GANs), we study methods for solving minimax problems with additional nonsmooth regularizers. We do so by employing \emph{monotone operator} theory, in particular the \emph{Forward-Backward-Forward (FBF)} method, which avoids the known issue of limit cycling by correcting each update by a second gradient evaluation. Furthermore, we propose a seemingly new scheme which recycles old gradients to mitigate the additional computational cost. In doing so we rediscover a known method, related to \emph{Optimistic Gradient Descent Ascent (OGDA)}. For both schemes we prove novel convergence rates for convex-concave minimax problems via a unifying approach. The derived error bounds are in terms of the gap function for the ergodic iterates. For the deterministic and the stochastic problem we show a convergence rate of $\mathcal{O}(1/k)$ and $\mathcal{O}(1/\sqrt{k})$, respectively. We complement our theoretical results with empirical improvements in the training of Wasserstein GANs on the CIFAR10 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信