具有多个测量异常值的离散时间线性系统的移动时域估计器的设计与稳定性

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Zhilin Liu, Zhongxin Wang, Shouzheng Yuan, Linhe Zheng, Guosheng Li
{"title":"具有多个测量异常值的离散时间线性系统的移动时域估计器的设计与稳定性","authors":"Zhilin Liu, Zhongxin Wang, Shouzheng Yuan, Linhe Zheng, Guosheng Li","doi":"10.1177/01423312231191332","DOIUrl":null,"url":null,"abstract":"This paper considers the state estimation problem for discrete-time linear systems suffering from dense measurement anomalies. Conventional moving horizon estimation algorithms can be used to solve the case containing sparse measurement anomalies, but their performance degrades dramatically as the number of outliers increases. To address this problem, we propose two outliers exclusion-moving horizon estimation strategies. That is, at each sampling instant, solving a set of least-squares cost functions aims to exclude all possible outliers. The state estimates corresponding to the optimal cost are retained and propagated to the next instant, and the procedure is repeated when new information arrives. The stability of the estimation error of the estimators is proved under moderate conditions, namely the observability of the noise-free state equation and the choice of the tuning parameters in the cost function. The simulation results demonstrate the robustness of the proposed approaches in the presence of dense outliers.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and stability of moving horizon estimator for discrete-time linear systems subject to multiple measurement outliers\",\"authors\":\"Zhilin Liu, Zhongxin Wang, Shouzheng Yuan, Linhe Zheng, Guosheng Li\",\"doi\":\"10.1177/01423312231191332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the state estimation problem for discrete-time linear systems suffering from dense measurement anomalies. Conventional moving horizon estimation algorithms can be used to solve the case containing sparse measurement anomalies, but their performance degrades dramatically as the number of outliers increases. To address this problem, we propose two outliers exclusion-moving horizon estimation strategies. That is, at each sampling instant, solving a set of least-squares cost functions aims to exclude all possible outliers. The state estimates corresponding to the optimal cost are retained and propagated to the next instant, and the procedure is repeated when new information arrives. The stability of the estimation error of the estimators is proved under moderate conditions, namely the observability of the noise-free state equation and the choice of the tuning parameters in the cost function. The simulation results demonstrate the robustness of the proposed approaches in the presence of dense outliers.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231191332\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312231191332","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有稠密测量异常的离散时间线性系统的状态估计问题。传统的移动视界估计算法可以用来解决包含稀疏测量异常的情况,但它们的性能随着异常值数量的增加而急剧下降。为了解决这个问题,我们提出了两种异常值排除移动视界估计策略。也就是说,在每个采样时刻,求解一组最小二乘成本函数旨在排除所有可能的异常值。与最优成本相对应的状态估计被保留并传播到下一时刻,并且当新信息到达时重复该过程。在中等条件下,即无噪声状态方程的可观察性和代价函数中调谐参数的选择,证明了估计器估计误差的稳定性。仿真结果证明了所提出的方法在存在密集异常值的情况下的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and stability of moving horizon estimator for discrete-time linear systems subject to multiple measurement outliers
This paper considers the state estimation problem for discrete-time linear systems suffering from dense measurement anomalies. Conventional moving horizon estimation algorithms can be used to solve the case containing sparse measurement anomalies, but their performance degrades dramatically as the number of outliers increases. To address this problem, we propose two outliers exclusion-moving horizon estimation strategies. That is, at each sampling instant, solving a set of least-squares cost functions aims to exclude all possible outliers. The state estimates corresponding to the optimal cost are retained and propagated to the next instant, and the procedure is repeated when new information arrives. The stability of the estimation error of the estimators is proved under moderate conditions, namely the observability of the noise-free state equation and the choice of the tuning parameters in the cost function. The simulation results demonstrate the robustness of the proposed approaches in the presence of dense outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
203
审稿时长
3.4 months
期刊介绍: Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信