一类多项式微分系统的局部稳定性

IF 0.5 Q3 MATHEMATICS
Ismail Mirumbe, J. Nakakawa, J. Mango
{"title":"一类多项式微分系统的局部稳定性","authors":"Ismail Mirumbe, J. Nakakawa, J. Mango","doi":"10.47836/mjms.17.2.06","DOIUrl":null,"url":null,"abstract":"We state and prove a condition for the local stability of a certain class of two dimensional system of polynomial differential equations. We give some examples of polynomial differential systems of equations to demonstrate that this local stability condition established for the trivial equilibrium point (0,0) is quite sharp and compare our result with the well known Lyapunov local stability criterion (Lyapunov's second method).","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Local Stability of a Certain Class of Polynomial Differential System\",\"authors\":\"Ismail Mirumbe, J. Nakakawa, J. Mango\",\"doi\":\"10.47836/mjms.17.2.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We state and prove a condition for the local stability of a certain class of two dimensional system of polynomial differential equations. We give some examples of polynomial differential systems of equations to demonstrate that this local stability condition established for the trivial equilibrium point (0,0) is quite sharp and compare our result with the well known Lyapunov local stability criterion (Lyapunov's second method).\",\"PeriodicalId\":43645,\"journal\":{\"name\":\"Malaysian Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/mjms.17.2.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.17.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出并证明了一类二维多项式微分方程组的局部稳定性的一个条件。我们给出了多项式微分方程组的一些例子来证明对于平凡平衡点(0,0)所建立的这种局部稳定性条件是相当尖锐的,并将我们的结果与著名的Lyapunov局部稳定性判据(Lyapunov第二方法)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Local Stability of a Certain Class of Polynomial Differential System
We state and prove a condition for the local stability of a certain class of two dimensional system of polynomial differential equations. We give some examples of polynomial differential systems of equations to demonstrate that this local stability condition established for the trivial equilibrium point (0,0) is quite sharp and compare our result with the well known Lyapunov local stability criterion (Lyapunov's second method).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
0
期刊介绍: The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信