{"title":"既有钢质铁路桥梁的极限和疲劳极限状态——具有历史钢材和连接类型的LRFD","authors":"R. Kroyer, A. Taras","doi":"10.1002/stco.202200042","DOIUrl":null,"url":null,"abstract":"The assessment of the load‐bearing capacity and fatigue strength of existing railway bridges has been playing an increasingly important role in the infrastructure management of railway operators for several years now. Currently, many bridge structures have been in operation longer than it was foreseen during their planning and construction. In addition, the axle loads on many lines, as well as the demands on the reliability of the verification results, have steadily increased. As the material properties and construction techniques in existing structures differ to some extent from nowadays structures, e.g., riveting instead of welding, it is important to provide engineers and operators with recommendations for the assessment of existing steel bridges. This article summarises the studies conducted as part of a research project initiated by Deutsche Bahn Netz AG for possible updates to DB RiL 805, which is used for the verification of railway bridges in the Deutsche Bahn (DB) network. The studies concerned the transition of verification concepts against static and fatigue loads used in the past to limit state verifications with partial safety factors in accordance with the Eurocodes. While initially related to an upgrade of a specific operator's design recommendation, the findings in this article are of more general nature and could form the basis for similar developments of recommendations for the assessment of existing, riveted structures independently throughout Europe.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ultimate and fatigue limit states of existing steel railway bridges – \\nLRFD with historical steel products and connection types\",\"authors\":\"R. Kroyer, A. Taras\",\"doi\":\"10.1002/stco.202200042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The assessment of the load‐bearing capacity and fatigue strength of existing railway bridges has been playing an increasingly important role in the infrastructure management of railway operators for several years now. Currently, many bridge structures have been in operation longer than it was foreseen during their planning and construction. In addition, the axle loads on many lines, as well as the demands on the reliability of the verification results, have steadily increased. As the material properties and construction techniques in existing structures differ to some extent from nowadays structures, e.g., riveting instead of welding, it is important to provide engineers and operators with recommendations for the assessment of existing steel bridges. This article summarises the studies conducted as part of a research project initiated by Deutsche Bahn Netz AG for possible updates to DB RiL 805, which is used for the verification of railway bridges in the Deutsche Bahn (DB) network. The studies concerned the transition of verification concepts against static and fatigue loads used in the past to limit state verifications with partial safety factors in accordance with the Eurocodes. While initially related to an upgrade of a specific operator's design recommendation, the findings in this article are of more general nature and could form the basis for similar developments of recommendations for the assessment of existing, riveted structures independently throughout Europe.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/stco.202200042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stco.202200042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultimate and fatigue limit states of existing steel railway bridges –
LRFD with historical steel products and connection types
The assessment of the load‐bearing capacity and fatigue strength of existing railway bridges has been playing an increasingly important role in the infrastructure management of railway operators for several years now. Currently, many bridge structures have been in operation longer than it was foreseen during their planning and construction. In addition, the axle loads on many lines, as well as the demands on the reliability of the verification results, have steadily increased. As the material properties and construction techniques in existing structures differ to some extent from nowadays structures, e.g., riveting instead of welding, it is important to provide engineers and operators with recommendations for the assessment of existing steel bridges. This article summarises the studies conducted as part of a research project initiated by Deutsche Bahn Netz AG for possible updates to DB RiL 805, which is used for the verification of railway bridges in the Deutsche Bahn (DB) network. The studies concerned the transition of verification concepts against static and fatigue loads used in the past to limit state verifications with partial safety factors in accordance with the Eurocodes. While initially related to an upgrade of a specific operator's design recommendation, the findings in this article are of more general nature and could form the basis for similar developments of recommendations for the assessment of existing, riveted structures independently throughout Europe.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.