用差分进化算法求解随机多人u型装配线平衡问题

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
Mohammad Zakaraia, H. Zaher, Naglaa Ragaa
{"title":"用差分进化算法求解随机多人u型装配线平衡问题","authors":"Mohammad Zakaraia, H. Zaher, Naglaa Ragaa","doi":"10.4995/IJPME.2021.16084","DOIUrl":null,"url":null,"abstract":"The U-shaped assembly lines help to have more flexibility than the straight assembly lines, where the operators can perform tasks in both sides of the line, the entrance and the exit sides. Having more than one operator in any station of the line can reduce the line length and thereby affects the number of produced products. This paper combines the U-shaped assembly line balancing problem with the multi-manned assembly line balancing problem in one problem. In addition, the processing times of the tasks are considered as stochastic, where they are represented as random variables with known means and variances. The problem is formulated as a mixed-integer linear programming and the cycle time constraints are formulated as chance-constraints. The proposed algorithm for solving the problem is a differential evolution algorithm. The parameter of the algorithm is optimized using experimental design and the computational results are done on 71 adapted problems selected from well-known benchmarks.","PeriodicalId":41823,"journal":{"name":"International Journal of Production Management and Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solving stochastic multi-manned U-shaped assembly line balancing problem using differential evolution algorithm\",\"authors\":\"Mohammad Zakaraia, H. Zaher, Naglaa Ragaa\",\"doi\":\"10.4995/IJPME.2021.16084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The U-shaped assembly lines help to have more flexibility than the straight assembly lines, where the operators can perform tasks in both sides of the line, the entrance and the exit sides. Having more than one operator in any station of the line can reduce the line length and thereby affects the number of produced products. This paper combines the U-shaped assembly line balancing problem with the multi-manned assembly line balancing problem in one problem. In addition, the processing times of the tasks are considered as stochastic, where they are represented as random variables with known means and variances. The problem is formulated as a mixed-integer linear programming and the cycle time constraints are formulated as chance-constraints. The proposed algorithm for solving the problem is a differential evolution algorithm. The parameter of the algorithm is optimized using experimental design and the computational results are done on 71 adapted problems selected from well-known benchmarks.\",\"PeriodicalId\":41823,\"journal\":{\"name\":\"International Journal of Production Management and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Production Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/IJPME.2021.16084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/IJPME.2021.16084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

U形装配线有助于比直线装配线具有更大的灵活性,在直线装配线中,操作员可以在生产线的两侧、入口和出口执行任务。在线路的任何一个站点都有一个以上的操作员可以减少线路长度,从而影响生产产品的数量。本文将U型装配线平衡问题与多人装配线平衡的问题结合为一个问题。此外,任务的处理时间被认为是随机的,其中它们被表示为具有已知均值和方差的随机变量。该问题被公式化为混合整数线性规划,循环时间约束被公式化为由机会约束。所提出的用于解决该问题的算法是差分进化算法。通过实验设计对算法的参数进行了优化,并对从知名基准中选取的71个自适应问题进行了计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving stochastic multi-manned U-shaped assembly line balancing problem using differential evolution algorithm
The U-shaped assembly lines help to have more flexibility than the straight assembly lines, where the operators can perform tasks in both sides of the line, the entrance and the exit sides. Having more than one operator in any station of the line can reduce the line length and thereby affects the number of produced products. This paper combines the U-shaped assembly line balancing problem with the multi-manned assembly line balancing problem in one problem. In addition, the processing times of the tasks are considered as stochastic, where they are represented as random variables with known means and variances. The problem is formulated as a mixed-integer linear programming and the cycle time constraints are formulated as chance-constraints. The proposed algorithm for solving the problem is a differential evolution algorithm. The parameter of the algorithm is optimized using experimental design and the computational results are done on 71 adapted problems selected from well-known benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
13.30%
发文量
18
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信