逐点James型常数

Pub Date : 2023-06-08 DOI:10.1007/s10476-023-0221-7
M. A. Rincón-Villamizar
{"title":"逐点James型常数","authors":"M. A. Rincón-Villamizar","doi":"10.1007/s10476-023-0221-7","DOIUrl":null,"url":null,"abstract":"<div><p>In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all <i>x</i> ∈ <i>X</i>, ∥<i>x</i>∥ = 1, </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p> We show that in almost transitive Banach spaces, the map <i>x</i> ∈ <i>X</i>, ∥<i>x</i>∥ = 1 ↦ <i>J</i>(<i>x, X, t</i>) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition <span>\\(J(x,X,t) = \\sqrt 2 \\)</span> for some unit vector <i>x</i> ∈ <i>X</i> implies that <i>X</i> is Hilbert.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The pointwise James type constant\",\"authors\":\"M. A. Rincón-Villamizar\",\"doi\":\"10.1007/s10476-023-0221-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all <i>x</i> ∈ <i>X</i>, ∥<i>x</i>∥ = 1, </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p> We show that in almost transitive Banach spaces, the map <i>x</i> ∈ <i>X</i>, ∥<i>x</i>∥ = 1 ↦ <i>J</i>(<i>x, X, t</i>) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition <span>\\\\(J(x,X,t) = \\\\sqrt 2 \\\\)</span> for some unit vector <i>x</i> ∈ <i>X</i> implies that <i>X</i> is Hilbert.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0221-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0221-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2008年,高桥引入了James类型的常量。本文讨论了点态James型常数:对于所有x∈x,∈x∈=1,我们证明了在几乎可传递Banach空间中,映射x∈x,∈↦ J(x,x,t)是常数。因此,考虑到Mazur旋转问题,我们证明了对于几乎传递Banach空间,对于某个单位向量x∈x,条件\(J(x,x,t)=\sqrt 2\)意味着x是Hilbert。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The pointwise James type constant

分享
查看原文
The pointwise James type constant

In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all xX, ∥x∥ = 1,

We show that in almost transitive Banach spaces, the map xX, ∥x∥ = 1 ↦ J(x, X, t) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition \(J(x,X,t) = \sqrt 2 \) for some unit vector xX implies that X is Hilbert.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信