液体活检监测治疗反应和耐药性

V. Calvo, A. Romero, M. Provencio
{"title":"液体活检监测治疗反应和耐药性","authors":"V. Calvo, A. Romero, M. Provencio","doi":"10.21037/PCM-20-46","DOIUrl":null,"url":null,"abstract":"Lung cancer is the leading cause of cancer-related death in industrialized countries and one of the most common cancers in the world. The most common type of lung cancer is non-small cell lung cancer (NSCLC), which accounts for 80–90%. Approximately 3–7% of NSCLC patients have a genomic rearrangement of the anaplastic lymphoma kinase (ALK) gene. Tyrosine kinase inhibitors (TKIs) of the ALK have significantly improved the quality of life and survival of ALK-positive NSCLC. The therapeutic arsenal includes first-generation ALK-TKI: crizotinib and more recently second-generation ALK-TKI: ceritinib, ensartinib, alectinib and brigatinib and third-generation ALK-TKI: lorlatinib. Second-generation ALKTKIs have become the new standard of care in first-line setting in advanced ALK-positive NSCLC patients. However, most of these patients relapse as the tumor acquires resistance mutations. Although the rebiopsy at the time of ALK-TKI progression is not always feasible, liquid biopsy at progression is a potential alternative tool. Circulating tumor cells (CTCs), circulating free tumor DNA (cfDNA), exosomes and tumor-educated platelets (TEPs) in body fluid could be used to monitor response to treatments and resistance mechanisms, this may provide relevant information to define genomic-driven therapeutic sequences. Even though, the use of ALK-TKI according to the resistance mechanism, at the time of progression, seems the most appropriate, blinded treatment decisions are the most common in the clinic.","PeriodicalId":74487,"journal":{"name":"Precision cancer medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring therapeutic response and resistance with liquid biopsy\",\"authors\":\"V. Calvo, A. Romero, M. Provencio\",\"doi\":\"10.21037/PCM-20-46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer is the leading cause of cancer-related death in industrialized countries and one of the most common cancers in the world. The most common type of lung cancer is non-small cell lung cancer (NSCLC), which accounts for 80–90%. Approximately 3–7% of NSCLC patients have a genomic rearrangement of the anaplastic lymphoma kinase (ALK) gene. Tyrosine kinase inhibitors (TKIs) of the ALK have significantly improved the quality of life and survival of ALK-positive NSCLC. The therapeutic arsenal includes first-generation ALK-TKI: crizotinib and more recently second-generation ALK-TKI: ceritinib, ensartinib, alectinib and brigatinib and third-generation ALK-TKI: lorlatinib. Second-generation ALKTKIs have become the new standard of care in first-line setting in advanced ALK-positive NSCLC patients. However, most of these patients relapse as the tumor acquires resistance mutations. Although the rebiopsy at the time of ALK-TKI progression is not always feasible, liquid biopsy at progression is a potential alternative tool. Circulating tumor cells (CTCs), circulating free tumor DNA (cfDNA), exosomes and tumor-educated platelets (TEPs) in body fluid could be used to monitor response to treatments and resistance mechanisms, this may provide relevant information to define genomic-driven therapeutic sequences. Even though, the use of ALK-TKI according to the resistance mechanism, at the time of progression, seems the most appropriate, blinded treatment decisions are the most common in the clinic.\",\"PeriodicalId\":74487,\"journal\":{\"name\":\"Precision cancer medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision cancer medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/PCM-20-46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision cancer medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/PCM-20-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症是工业化国家癌症相关死亡的主要原因,也是世界上最常见的癌症之一。癌症最常见的类型是癌症(NSCLC),其占80-90%。大约3-7%的NSCLC患者存在间变性淋巴瘤激酶(ALK)基因的基因组重排。ALK的酪氨酸激酶抑制剂(TKIs)显著改善了ALK阳性NSCLC的生活质量和生存率。治疗药物库包括第一代ALK-TKI:克唑替尼,以及最近的第二代ALK-SKI:西替尼、恩沙替尼、阿来替尼和brigatinib,以及第三代ALK-TTI:洛拉替尼。第二代ALKTKIs已成为晚期ALK阳性NSCLC患者一线护理的新标准。然而,这些患者中的大多数随着肿瘤获得耐药性突变而复发。尽管ALK-TKI进展时的再活检并不总是可行的,但进展时的液体活检是一种潜在的替代工具。体液中的循环肿瘤细胞(CTC)、循环游离肿瘤DNA(cfDNA)、外泌体和肿瘤培养血小板(TEPs)可用于监测对治疗的反应和耐药性机制,这可能为定义基因组驱动的治疗序列提供相关信息。尽管在进展时,根据耐药性机制使用ALK-TKI似乎是最合适的,但临床上最常见的是盲法治疗决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring therapeutic response and resistance with liquid biopsy
Lung cancer is the leading cause of cancer-related death in industrialized countries and one of the most common cancers in the world. The most common type of lung cancer is non-small cell lung cancer (NSCLC), which accounts for 80–90%. Approximately 3–7% of NSCLC patients have a genomic rearrangement of the anaplastic lymphoma kinase (ALK) gene. Tyrosine kinase inhibitors (TKIs) of the ALK have significantly improved the quality of life and survival of ALK-positive NSCLC. The therapeutic arsenal includes first-generation ALK-TKI: crizotinib and more recently second-generation ALK-TKI: ceritinib, ensartinib, alectinib and brigatinib and third-generation ALK-TKI: lorlatinib. Second-generation ALKTKIs have become the new standard of care in first-line setting in advanced ALK-positive NSCLC patients. However, most of these patients relapse as the tumor acquires resistance mutations. Although the rebiopsy at the time of ALK-TKI progression is not always feasible, liquid biopsy at progression is a potential alternative tool. Circulating tumor cells (CTCs), circulating free tumor DNA (cfDNA), exosomes and tumor-educated platelets (TEPs) in body fluid could be used to monitor response to treatments and resistance mechanisms, this may provide relevant information to define genomic-driven therapeutic sequences. Even though, the use of ALK-TKI according to the resistance mechanism, at the time of progression, seems the most appropriate, blinded treatment decisions are the most common in the clinic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信