群环中零因子元素的概率

IF 0.7 Q2 MATHEMATICS
M. Salih, M. Haval
{"title":"群环中零因子元素的概率","authors":"M. Salih, M. Haval","doi":"10.22108/IJGT.2021.126694.1664","DOIUrl":null,"url":null,"abstract":"Let R be a non trivial finite commutative ring with identity and G be a non trivial\ngroup. We denote by P(RG) the probability that the product of two randomly chosen\nelements of a finite group ring RG is zero. We show that P(RG) <0.25 if and only if\nRG is not isomorphic to Z2C2, Z3C2, Z2C3. Furthermore, we give the upper bound and lower bound for\nP(RG). In particular, we present the general formula for P(RG), where R is a finite field of\ncharacteristic p and |G| ≤ 4.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the probability of zero divisor elements in group rings\",\"authors\":\"M. Salih, M. Haval\",\"doi\":\"10.22108/IJGT.2021.126694.1664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a non trivial finite commutative ring with identity and G be a non trivial\\ngroup. We denote by P(RG) the probability that the product of two randomly chosen\\nelements of a finite group ring RG is zero. We show that P(RG) <0.25 if and only if\\nRG is not isomorphic to Z2C2, Z3C2, Z2C3. Furthermore, we give the upper bound and lower bound for\\nP(RG). In particular, we present the general formula for P(RG), where R is a finite field of\\ncharacteristic p and |G| ≤ 4.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2021.126694.1664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.126694.1664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设R是一个具有恒等的非平凡有限交换环,G是一个非平凡群。我们用P(RG)表示有限群环RG中随机选择的两个元素之积为零的概率。我们证明了P(RG) <0.25当且仅当RG不同构于Z2C2, Z3C2, Z2C3。进一步给出了p (RG)的上界和下界。特别地,我们给出了P(RG)的一般公式,其中R是特征P的有限域,|G|≤4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the probability of zero divisor elements in group rings
Let R be a non trivial finite commutative ring with identity and G be a non trivial group. We denote by P(RG) the probability that the product of two randomly chosen elements of a finite group ring RG is zero. We show that P(RG) <0.25 if and only if RG is not isomorphic to Z2C2, Z3C2, Z2C3. Furthermore, we give the upper bound and lower bound for P(RG). In particular, we present the general formula for P(RG), where R is a finite field of characteristic p and |G| ≤ 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信