{"title":"基于Doolitle LU分解的k-七对角矩阵的反演","authors":"Maryam Shams Solary, Mehran Rasouli","doi":"10.1007/s11766-022-3763-8","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of the present paper is to show a new numeric and symbolic algorithm for inverting a general nonsingular k-heptadiagonal matrix. This work is based on Doolitle LU factorization of the matrix. We obtain a series of recursive relationships then we use them for constructing a novel algorithm for inverting a k-heptadiagonal matrix. The computational cost of the algorithm is calculated. Some illustrative examples are given to demonstrate the effectiveness of the proposed method.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"37 3","pages":"340 - 349"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inverting a k-heptadiagonal matrix based on Doolitle LU factorization\",\"authors\":\"Maryam Shams Solary, Mehran Rasouli\",\"doi\":\"10.1007/s11766-022-3763-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of the present paper is to show a new numeric and symbolic algorithm for inverting a general nonsingular k-heptadiagonal matrix. This work is based on Doolitle LU factorization of the matrix. We obtain a series of recursive relationships then we use them for constructing a novel algorithm for inverting a k-heptadiagonal matrix. The computational cost of the algorithm is calculated. Some illustrative examples are given to demonstrate the effectiveness of the proposed method.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"37 3\",\"pages\":\"340 - 349\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-022-3763-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-022-3763-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inverting a k-heptadiagonal matrix based on Doolitle LU factorization
The purpose of the present paper is to show a new numeric and symbolic algorithm for inverting a general nonsingular k-heptadiagonal matrix. This work is based on Doolitle LU factorization of the matrix. We obtain a series of recursive relationships then we use them for constructing a novel algorithm for inverting a k-heptadiagonal matrix. The computational cost of the algorithm is calculated. Some illustrative examples are given to demonstrate the effectiveness of the proposed method.
期刊介绍:
Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects.
The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry.
Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.