{"title":"晶状体外科多项式中的第三项","authors":"M. Tange","doi":"10.32917/H2020050","DOIUrl":null,"url":null,"abstract":"It is well-known that the second coefficient of the Alexander polynomial of any lens space knot in $S^3$ is $-1$. We show that the non-zero third coefficient condition of the Alexander polynomial of a lens space knot $K$ in $S^3$ confines the surgery to the one realized by the $(2,2g+1)$-torus knot, where $g$ is the genus of $K$. In particular, such a lens surgery polynomial coincides with $\\Delta_{T(2,2g+1)}(t)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The third term in lens surgery\\n polynomials\",\"authors\":\"M. Tange\",\"doi\":\"10.32917/H2020050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that the second coefficient of the Alexander polynomial of any lens space knot in $S^3$ is $-1$. We show that the non-zero third coefficient condition of the Alexander polynomial of a lens space knot $K$ in $S^3$ confines the surgery to the one realized by the $(2,2g+1)$-torus knot, where $g$ is the genus of $K$. In particular, such a lens surgery polynomial coincides with $\\\\Delta_{T(2,2g+1)}(t)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/H2020050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/H2020050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is well-known that the second coefficient of the Alexander polynomial of any lens space knot in $S^3$ is $-1$. We show that the non-zero third coefficient condition of the Alexander polynomial of a lens space knot $K$ in $S^3$ confines the surgery to the one realized by the $(2,2g+1)$-torus knot, where $g$ is the genus of $K$. In particular, such a lens surgery polynomial coincides with $\Delta_{T(2,2g+1)}(t)$.