{"title":"带孔洞的非局部Mindlin应变梯度热弹性的数学建模","authors":"M. Aouadi","doi":"10.1051/mmnp/2022042","DOIUrl":null,"url":null,"abstract":"A nonlocal theory for thermoelastic materials with voids based on Mindlin’s strain gradient theory was derived in this paper with some qualitative properties. We have also established the size effect of nonlocal heat conduction with the aids of extended irreversible thermodynamics and generalized free energy. The obtained system of equations is a coupling of three equations with higher gradients terms due to the length scale parameters ϖ and l . This poses some new mathematical difficulties due to the lack of regularity. Based on nonlinear semigroups and the theory of monotone operators, we establish existence and uniqueness of weak and strong solutions to the one dimensional problem. By an approach based on the Gearhart-HerbstPrüss-Huang theorem, we prove that the associated semigroup is exponentially stable; but not analytic.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modelling in nonlocal Mindlin’s strain gradient thermoelasticity with voids\",\"authors\":\"M. Aouadi\",\"doi\":\"10.1051/mmnp/2022042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlocal theory for thermoelastic materials with voids based on Mindlin’s strain gradient theory was derived in this paper with some qualitative properties. We have also established the size effect of nonlocal heat conduction with the aids of extended irreversible thermodynamics and generalized free energy. The obtained system of equations is a coupling of three equations with higher gradients terms due to the length scale parameters ϖ and l . This poses some new mathematical difficulties due to the lack of regularity. Based on nonlinear semigroups and the theory of monotone operators, we establish existence and uniqueness of weak and strong solutions to the one dimensional problem. By an approach based on the Gearhart-HerbstPrüss-Huang theorem, we prove that the associated semigroup is exponentially stable; but not analytic.\",\"PeriodicalId\":18285,\"journal\":{\"name\":\"Mathematical Modelling of Natural Phenomena\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling of Natural Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2022042\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Mathematical modelling in nonlocal Mindlin’s strain gradient thermoelasticity with voids
A nonlocal theory for thermoelastic materials with voids based on Mindlin’s strain gradient theory was derived in this paper with some qualitative properties. We have also established the size effect of nonlocal heat conduction with the aids of extended irreversible thermodynamics and generalized free energy. The obtained system of equations is a coupling of three equations with higher gradients terms due to the length scale parameters ϖ and l . This poses some new mathematical difficulties due to the lack of regularity. Based on nonlinear semigroups and the theory of monotone operators, we establish existence and uniqueness of weak and strong solutions to the one dimensional problem. By an approach based on the Gearhart-HerbstPrüss-Huang theorem, we prove that the associated semigroup is exponentially stable; but not analytic.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.