{"title":"τ-可测算子的Young不等式的进一步广义精化","authors":"M. Ighachane, M. Akkouchi","doi":"10.2478/mjpaa-2021-0015","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we prove that if a, b > 0 and 0 ≤ v ≤ 1. Then for all positive integer m (1) - For v ∈ v∈[ 0,12n ] v \\in \\left[ {0,{1 \\over {{2^n}}}} \\right] , we have (avb1-v)m+∑k=1n2k-1vm(bm-(ab2k-1-1)m2k)2≤(va+(1-v)b)m. {\\left( {{a^v}{b^{1 - v}}} \\right)^m} + \\sum\\limits_{k = 1}^n {{2^{k - 1}}{v^m}{{\\left( {\\sqrt {{b^m}} - \\root {{2^k}} \\of {\\left( {a{b^{2k - 1}} - 1} \\right)m} } \\right)}^2} \\le {{\\left( {va + \\left( {1 - v} \\right)b} \\right)}^m}.} (2) - For v ∈ v∈[ 2n-12n,1 ] v \\in \\left[ {{{{2^n} - 1} \\over {{2^n}}},1} \\right] , we have (avb1-v)m+∑k=1n2k-1(1-v)m(am-(ba2k-1-1)m2k)2≤(va+(1-v)b)m, {\\left( {{a^v}{b^{1 - v}}} \\right)^m} + \\sum\\limits_{k = 1}^n {{2^{k - 1}}{{\\left( {1 - v} \\right)}^m}{{\\left( {\\sqrt {{a^m}} - \\root {{2^k}} \\of {\\left( {b{a^{2k - 1}} - 1} \\right)m} } \\right)}^2} \\le {{\\left( {va + \\left( {1 - v} \\right)b} \\right)}^m},} we also prove two similar inequalities for the cases v ∈ v∈[ 2n-12n,12 ] v \\in \\left[ {{{{2^n} - 1} \\over {{2^n}}},{1 \\over 2}} \\right] and v ∈ v∈[ 12,2n+12n ] v \\in \\left[ {{1 \\over 2},{{{2^n} + 1} \\over {{2^n}}}} \\right] . These inequalities provides a generalization of an important refinements of the Young inequality obtained in 2017 by S. Furuichi. As applications we shall give some refined Young type inequalities for the traces, determinants, and p-norms of positive τ-measurable operators.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"214 - 226"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Further generalized refinement of Young’s inequalities for τ -mesurable operators\",\"authors\":\"M. Ighachane, M. Akkouchi\",\"doi\":\"10.2478/mjpaa-2021-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we prove that if a, b > 0 and 0 ≤ v ≤ 1. Then for all positive integer m (1) - For v ∈ v∈[ 0,12n ] v \\\\in \\\\left[ {0,{1 \\\\over {{2^n}}}} \\\\right] , we have (avb1-v)m+∑k=1n2k-1vm(bm-(ab2k-1-1)m2k)2≤(va+(1-v)b)m. {\\\\left( {{a^v}{b^{1 - v}}} \\\\right)^m} + \\\\sum\\\\limits_{k = 1}^n {{2^{k - 1}}{v^m}{{\\\\left( {\\\\sqrt {{b^m}} - \\\\root {{2^k}} \\\\of {\\\\left( {a{b^{2k - 1}} - 1} \\\\right)m} } \\\\right)}^2} \\\\le {{\\\\left( {va + \\\\left( {1 - v} \\\\right)b} \\\\right)}^m}.} (2) - For v ∈ v∈[ 2n-12n,1 ] v \\\\in \\\\left[ {{{{2^n} - 1} \\\\over {{2^n}}},1} \\\\right] , we have (avb1-v)m+∑k=1n2k-1(1-v)m(am-(ba2k-1-1)m2k)2≤(va+(1-v)b)m, {\\\\left( {{a^v}{b^{1 - v}}} \\\\right)^m} + \\\\sum\\\\limits_{k = 1}^n {{2^{k - 1}}{{\\\\left( {1 - v} \\\\right)}^m}{{\\\\left( {\\\\sqrt {{a^m}} - \\\\root {{2^k}} \\\\of {\\\\left( {b{a^{2k - 1}} - 1} \\\\right)m} } \\\\right)}^2} \\\\le {{\\\\left( {va + \\\\left( {1 - v} \\\\right)b} \\\\right)}^m},} we also prove two similar inequalities for the cases v ∈ v∈[ 2n-12n,12 ] v \\\\in \\\\left[ {{{{2^n} - 1} \\\\over {{2^n}}},{1 \\\\over 2}} \\\\right] and v ∈ v∈[ 12,2n+12n ] v \\\\in \\\\left[ {{1 \\\\over 2},{{{2^n} + 1} \\\\over {{2^n}}}} \\\\right] . These inequalities provides a generalization of an important refinements of the Young inequality obtained in 2017 by S. Furuichi. As applications we shall give some refined Young type inequalities for the traces, determinants, and p-norms of positive τ-measurable operators.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"7 1\",\"pages\":\"214 - 226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2021-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Further generalized refinement of Young’s inequalities for τ -mesurable operators
Abstract In this paper, we prove that if a, b > 0 and 0 ≤ v ≤ 1. Then for all positive integer m (1) - For v ∈ v∈[ 0,12n ] v \in \left[ {0,{1 \over {{2^n}}}} \right] , we have (avb1-v)m+∑k=1n2k-1vm(bm-(ab2k-1-1)m2k)2≤(va+(1-v)b)m. {\left( {{a^v}{b^{1 - v}}} \right)^m} + \sum\limits_{k = 1}^n {{2^{k - 1}}{v^m}{{\left( {\sqrt {{b^m}} - \root {{2^k}} \of {\left( {a{b^{2k - 1}} - 1} \right)m} } \right)}^2} \le {{\left( {va + \left( {1 - v} \right)b} \right)}^m}.} (2) - For v ∈ v∈[ 2n-12n,1 ] v \in \left[ {{{{2^n} - 1} \over {{2^n}}},1} \right] , we have (avb1-v)m+∑k=1n2k-1(1-v)m(am-(ba2k-1-1)m2k)2≤(va+(1-v)b)m, {\left( {{a^v}{b^{1 - v}}} \right)^m} + \sum\limits_{k = 1}^n {{2^{k - 1}}{{\left( {1 - v} \right)}^m}{{\left( {\sqrt {{a^m}} - \root {{2^k}} \of {\left( {b{a^{2k - 1}} - 1} \right)m} } \right)}^2} \le {{\left( {va + \left( {1 - v} \right)b} \right)}^m},} we also prove two similar inequalities for the cases v ∈ v∈[ 2n-12n,12 ] v \in \left[ {{{{2^n} - 1} \over {{2^n}}},{1 \over 2}} \right] and v ∈ v∈[ 12,2n+12n ] v \in \left[ {{1 \over 2},{{{2^n} + 1} \over {{2^n}}}} \right] . These inequalities provides a generalization of an important refinements of the Young inequality obtained in 2017 by S. Furuichi. As applications we shall give some refined Young type inequalities for the traces, determinants, and p-norms of positive τ-measurable operators.