使用培训前模型为螺钉质量分类

Muhammad Rafif, Diyah Utami Kusumaning Putri, Lukman Awaludin
{"title":"使用培训前模型为螺钉质量分类","authors":"Muhammad Rafif, Diyah Utami Kusumaning Putri, Lukman Awaludin","doi":"10.22146/ijeis.78112","DOIUrl":null,"url":null,"abstract":"Inspeksi kualitas produk berbasis citra merupakan hal yang penting bagi industri manufaktur. Tugas tersebut sebagian besar masih dilakukan oleh manusia yang memiliki unit per hour rendah. Metode konvensional untuk inspeksi citra masih mengandalkan metode berbasis fitur, yang memiliki masalah sulitnya generalisasi dan ekstraksi fitur. Masalah tersebut diatasi dengan metode CNN, tetapi CNN membutuhkan data yang besar dan waktu training yang lama. Penggunaan pre-trained model dan augmentasi citra dapat menyelesaikan permasalahan pada metode-metode sebelumnya. Namun, belum ada penelitian yang secara lengkap meneliti dan membandingkan performa berbagai pre-trained model dan variasi augmentasi citra untuk tugas inspeksi citra kualitas produk manufaktur.Proses penelitian menggunakan dataset sekrup berjenis multi class dan binary class pada 33 jenis pre-trained model dan 8 jenis augmentasi citra. Pengujian pre-trained model menggunakan dataset gabungan seluruh jenis augmentasi citra. Model dengan akurasi tertinggi adalah EfficientNetV2-L untuk dataset multi class (97.8%) dan VGG-19 untuk dataset binary class (96.5%). Augmentasi citra dengan signifikansi tertinggi terhadap performa model adalah blur, dengan akurasi 81.1% pada multi class dan 92% pada binary class. Keseluruhan proses pengujian pre-trained model dan augmentasi citra berjalan dengan baik. Kata kunci—Inspeksi kualitas produk, Pre-trained model, Augmentasi citra","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penggunaan Pre-trained Model untuk Klasifikasi Kualitas Sekrup\",\"authors\":\"Muhammad Rafif, Diyah Utami Kusumaning Putri, Lukman Awaludin\",\"doi\":\"10.22146/ijeis.78112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspeksi kualitas produk berbasis citra merupakan hal yang penting bagi industri manufaktur. Tugas tersebut sebagian besar masih dilakukan oleh manusia yang memiliki unit per hour rendah. Metode konvensional untuk inspeksi citra masih mengandalkan metode berbasis fitur, yang memiliki masalah sulitnya generalisasi dan ekstraksi fitur. Masalah tersebut diatasi dengan metode CNN, tetapi CNN membutuhkan data yang besar dan waktu training yang lama. Penggunaan pre-trained model dan augmentasi citra dapat menyelesaikan permasalahan pada metode-metode sebelumnya. Namun, belum ada penelitian yang secara lengkap meneliti dan membandingkan performa berbagai pre-trained model dan variasi augmentasi citra untuk tugas inspeksi citra kualitas produk manufaktur.Proses penelitian menggunakan dataset sekrup berjenis multi class dan binary class pada 33 jenis pre-trained model dan 8 jenis augmentasi citra. Pengujian pre-trained model menggunakan dataset gabungan seluruh jenis augmentasi citra. Model dengan akurasi tertinggi adalah EfficientNetV2-L untuk dataset multi class (97.8%) dan VGG-19 untuk dataset binary class (96.5%). Augmentasi citra dengan signifikansi tertinggi terhadap performa model adalah blur, dengan akurasi 81.1% pada multi class dan 92% pada binary class. Keseluruhan proses pengujian pre-trained model dan augmentasi citra berjalan dengan baik. Kata kunci—Inspeksi kualitas produk, Pre-trained model, Augmentasi citra\",\"PeriodicalId\":31590,\"journal\":{\"name\":\"IJEIS Indonesian Journal of Electronics and Instrumentation Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJEIS Indonesian Journal of Electronics and Instrumentation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijeis.78112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijeis.78112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

形象产品质量检查对制造业至关重要。这项任务主要是由时速较低的人类来完成的。传统的图像检查方法仍然依赖于基于特性的方法,这对特性的概括和提取有困难。这个问题是用CNN的方法解决的,但是CNN需要大量的数据和长期的培训时间。培训前模型和增强图像的使用可以解决以前的方法的问题。然而,还没有一项研究对各种培训模型的表现和图像的变化进行全面的研究,以检验制造产品的质量意象。研究过程使用33种试验性模型的多级排版和8种增强图像。培训模型测试使用了整个增强图像类型的集成数据集。最准确的模型是多级数据集(97.8%)和vgg19的二进制级数据集(96.5%)的effientnetv2 - l。图像增强与模型性能具有最高重要性的是模糊,多级有81.1%的准确率,二进制级有92%。整个训练前测试模型和增强图像的过程进展顺利。关键词——产品质量检查、培训前模型、增强图像
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penggunaan Pre-trained Model untuk Klasifikasi Kualitas Sekrup
Inspeksi kualitas produk berbasis citra merupakan hal yang penting bagi industri manufaktur. Tugas tersebut sebagian besar masih dilakukan oleh manusia yang memiliki unit per hour rendah. Metode konvensional untuk inspeksi citra masih mengandalkan metode berbasis fitur, yang memiliki masalah sulitnya generalisasi dan ekstraksi fitur. Masalah tersebut diatasi dengan metode CNN, tetapi CNN membutuhkan data yang besar dan waktu training yang lama. Penggunaan pre-trained model dan augmentasi citra dapat menyelesaikan permasalahan pada metode-metode sebelumnya. Namun, belum ada penelitian yang secara lengkap meneliti dan membandingkan performa berbagai pre-trained model dan variasi augmentasi citra untuk tugas inspeksi citra kualitas produk manufaktur.Proses penelitian menggunakan dataset sekrup berjenis multi class dan binary class pada 33 jenis pre-trained model dan 8 jenis augmentasi citra. Pengujian pre-trained model menggunakan dataset gabungan seluruh jenis augmentasi citra. Model dengan akurasi tertinggi adalah EfficientNetV2-L untuk dataset multi class (97.8%) dan VGG-19 untuk dataset binary class (96.5%). Augmentasi citra dengan signifikansi tertinggi terhadap performa model adalah blur, dengan akurasi 81.1% pada multi class dan 92% pada binary class. Keseluruhan proses pengujian pre-trained model dan augmentasi citra berjalan dengan baik. Kata kunci—Inspeksi kualitas produk, Pre-trained model, Augmentasi citra
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信