{"title":"基于改进的MobilenetV2神经网络的绵羊人脸识别与分类","authors":"Yue Pang, Wenbo Yu, Yongan Zhang, Chuanzhong Xuan, Pei Wu","doi":"10.1177/17298806231152969","DOIUrl":null,"url":null,"abstract":"Large-scale sheep farming has conventionally relied on barcodes and ear tags, devices that can be difficult to implement and maintain, for sheep identification and tracking. Biological data have also been used for tracking in recent years but have not been widely adopted due to the difficulty and high costs of data collection. To address these issues, a noncontact facial recognition technique is proposed in this study, in which training data were acquired in natural conditions using a series of video cameras, as Dupo sheep walked freely through a gate. A key frame extraction algorithm was then applied to automatically generate sheep face data sets representing various poses. An improved MobilenetV2 framework, termed Order-MobilenetV2 (O-MobilenetV2), was developed from an existing advanced convolutional neural network and used to improve the performance of feature extraction. In addition, O-MobilenetV2 includes a unique conv3x3 deep convolution module, which facilitated higher accuracy while reducing the number of required calculations by approximately two-thirds. A series of validation tests were performed in which the algorithm identified individual sheep using facial features, with the proposed model achieving the highest accuracy (95.88%) among comparable algorithms. In addition to high accuracy and low processing times, this approach does not require significant data pre-processing, which is common among other models and prohibitive for large sheep populations. This combination of simple operation, low equipment costs, and high robustness to variable sheep postures and environmental conditions makes our proposed technique a viable new strategy for sheep facial recognition and tracking.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sheep face recognition and classification based on an improved MobilenetV2 neural network\",\"authors\":\"Yue Pang, Wenbo Yu, Yongan Zhang, Chuanzhong Xuan, Pei Wu\",\"doi\":\"10.1177/17298806231152969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale sheep farming has conventionally relied on barcodes and ear tags, devices that can be difficult to implement and maintain, for sheep identification and tracking. Biological data have also been used for tracking in recent years but have not been widely adopted due to the difficulty and high costs of data collection. To address these issues, a noncontact facial recognition technique is proposed in this study, in which training data were acquired in natural conditions using a series of video cameras, as Dupo sheep walked freely through a gate. A key frame extraction algorithm was then applied to automatically generate sheep face data sets representing various poses. An improved MobilenetV2 framework, termed Order-MobilenetV2 (O-MobilenetV2), was developed from an existing advanced convolutional neural network and used to improve the performance of feature extraction. In addition, O-MobilenetV2 includes a unique conv3x3 deep convolution module, which facilitated higher accuracy while reducing the number of required calculations by approximately two-thirds. A series of validation tests were performed in which the algorithm identified individual sheep using facial features, with the proposed model achieving the highest accuracy (95.88%) among comparable algorithms. In addition to high accuracy and low processing times, this approach does not require significant data pre-processing, which is common among other models and prohibitive for large sheep populations. This combination of simple operation, low equipment costs, and high robustness to variable sheep postures and environmental conditions makes our proposed technique a viable new strategy for sheep facial recognition and tracking.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806231152969\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231152969","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Sheep face recognition and classification based on an improved MobilenetV2 neural network
Large-scale sheep farming has conventionally relied on barcodes and ear tags, devices that can be difficult to implement and maintain, for sheep identification and tracking. Biological data have also been used for tracking in recent years but have not been widely adopted due to the difficulty and high costs of data collection. To address these issues, a noncontact facial recognition technique is proposed in this study, in which training data were acquired in natural conditions using a series of video cameras, as Dupo sheep walked freely through a gate. A key frame extraction algorithm was then applied to automatically generate sheep face data sets representing various poses. An improved MobilenetV2 framework, termed Order-MobilenetV2 (O-MobilenetV2), was developed from an existing advanced convolutional neural network and used to improve the performance of feature extraction. In addition, O-MobilenetV2 includes a unique conv3x3 deep convolution module, which facilitated higher accuracy while reducing the number of required calculations by approximately two-thirds. A series of validation tests were performed in which the algorithm identified individual sheep using facial features, with the proposed model achieving the highest accuracy (95.88%) among comparable algorithms. In addition to high accuracy and low processing times, this approach does not require significant data pre-processing, which is common among other models and prohibitive for large sheep populations. This combination of simple operation, low equipment costs, and high robustness to variable sheep postures and environmental conditions makes our proposed technique a viable new strategy for sheep facial recognition and tracking.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.