M. Varney, M. Passmore, A. Gaylard
{"title":"常侧风条件下非对称侧锥的参数研究","authors":"M. Varney, M. Passmore, A. Gaylard","doi":"10.4271/06-11-03-0018","DOIUrl":null,"url":null,"abstract":"Copyright © 2018 SAE International. Sports Utility Vehicles (SUVs) often have blunt rear end geometries for design and practicality, which is not typically aerodynamic. Drag can be reduced with a number of passive and active methods, which are generally prioritised at zero yaw, which is not entirely representative of the “on road” environment. As such, to combine a visually square geometry (at rest) with optimal drag reductions at non-zero yaw, an adaptive system that applies vertical side edge tapers independently is tested statically. A parametric study has been undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor Model. The aerodynamic effect of implementing asymmetric side tapering has been assessed for a range of yaw angles (0°, ±2.5°, ±5° and ±10°) on the force and moment coefficients. This adaptive system reduced drag at every non-zero yaw angle tested, from the simplest geometry (full body taper without wheels) to the most complex geometry (upper body taper with wheels) with varying levels of success; providing additional drag reductions from 3% to 125%. The system also shows potential to beneficially modify the cross wind stability of the geometry.","PeriodicalId":46295,"journal":{"name":"SAE International Journal of Passenger Cars-Mechanical Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4271/06-11-03-0018","citationCount":"7","resultStr":"{\"title\":\"Parametric Study of Asymmetric Side Tapering in Constant Cross Wind\\n Conditions\",\"authors\":\"M. Varney, M. Passmore, A. Gaylard\",\"doi\":\"10.4271/06-11-03-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copyright © 2018 SAE International. Sports Utility Vehicles (SUVs) often have blunt rear end geometries for design and practicality, which is not typically aerodynamic. Drag can be reduced with a number of passive and active methods, which are generally prioritised at zero yaw, which is not entirely representative of the “on road” environment. As such, to combine a visually square geometry (at rest) with optimal drag reductions at non-zero yaw, an adaptive system that applies vertical side edge tapers independently is tested statically. A parametric study has been undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor Model. The aerodynamic effect of implementing asymmetric side tapering has been assessed for a range of yaw angles (0°, ±2.5°, ±5° and ±10°) on the force and moment coefficients. This adaptive system reduced drag at every non-zero yaw angle tested, from the simplest geometry (full body taper without wheels) to the most complex geometry (upper body taper with wheels) with varying levels of success; providing additional drag reductions from 3% to 125%. The system also shows potential to beneficially modify the cross wind stability of the geometry.\",\"PeriodicalId\":46295,\"journal\":{\"name\":\"SAE International Journal of Passenger Cars-Mechanical Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4271/06-11-03-0018\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE International Journal of Passenger Cars-Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/06-11-03-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Passenger Cars-Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/06-11-03-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 7
Parametric Study of Asymmetric Side Tapering in Constant Cross Wind
Conditions
Copyright © 2018 SAE International. Sports Utility Vehicles (SUVs) often have blunt rear end geometries for design and practicality, which is not typically aerodynamic. Drag can be reduced with a number of passive and active methods, which are generally prioritised at zero yaw, which is not entirely representative of the “on road” environment. As such, to combine a visually square geometry (at rest) with optimal drag reductions at non-zero yaw, an adaptive system that applies vertical side edge tapers independently is tested statically. A parametric study has been undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor Model. The aerodynamic effect of implementing asymmetric side tapering has been assessed for a range of yaw angles (0°, ±2.5°, ±5° and ±10°) on the force and moment coefficients. This adaptive system reduced drag at every non-zero yaw angle tested, from the simplest geometry (full body taper without wheels) to the most complex geometry (upper body taper with wheels) with varying levels of success; providing additional drag reductions from 3% to 125%. The system also shows potential to beneficially modify the cross wind stability of the geometry.