{"title":"负连分数的丢番图近似","authors":"Hiroaki Ito","doi":"10.3836/tjm/1502179364","DOIUrl":null,"url":null,"abstract":"We show that the growth rate of denominator $Q_n$ of the $n$-th convergent of negative expansion of $x$ and the rate of approximation: $$ \\frac{\\log{n}}{n}\\log{\\left|x-\\frac{P_n}{Q_n}\\right|}\\rightarrow -\\frac{\\pi^2}{3} \\quad \\text{in measure.} $$ for a.e. $x$. In the course of the proof, we reprove known inspiring results that arithmetic mean of digits of negative continued fraction converges to 3 in measure, although the limit inferior is 2, and the limit superior is infinite almost everywhere.","PeriodicalId":48976,"journal":{"name":"Tokyo Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diophantine Approximation by Negative Continued Fraction\",\"authors\":\"Hiroaki Ito\",\"doi\":\"10.3836/tjm/1502179364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the growth rate of denominator $Q_n$ of the $n$-th convergent of negative expansion of $x$ and the rate of approximation: $$ \\\\frac{\\\\log{n}}{n}\\\\log{\\\\left|x-\\\\frac{P_n}{Q_n}\\\\right|}\\\\rightarrow -\\\\frac{\\\\pi^2}{3} \\\\quad \\\\text{in measure.} $$ for a.e. $x$. In the course of the proof, we reprove known inspiring results that arithmetic mean of digits of negative continued fraction converges to 3 in measure, although the limit inferior is 2, and the limit superior is infinite almost everywhere.\",\"PeriodicalId\":48976,\"journal\":{\"name\":\"Tokyo Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tokyo Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179364\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tokyo Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179364","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Diophantine Approximation by Negative Continued Fraction
We show that the growth rate of denominator $Q_n$ of the $n$-th convergent of negative expansion of $x$ and the rate of approximation: $$ \frac{\log{n}}{n}\log{\left|x-\frac{P_n}{Q_n}\right|}\rightarrow -\frac{\pi^2}{3} \quad \text{in measure.} $$ for a.e. $x$. In the course of the proof, we reprove known inspiring results that arithmetic mean of digits of negative continued fraction converges to 3 in measure, although the limit inferior is 2, and the limit superior is infinite almost everywhere.
期刊介绍:
The Tokyo Journal of Mathematics was founded in 1978 with the financial support of six institutions in the Tokyo area: Gakushuin University, Keio University, Sophia University, Tokyo Metropolitan University, Tsuda College, and Waseda University. In 2000 Chuo University and Meiji University, in 2005 Tokai University, and in 2013 Tokyo University of Science, joined as supporting institutions.