全系统热分析网格偏差的可分离性和参数不确定性

IF 0.5 Q4 ENGINEERING, MECHANICAL
Benjamin Schroeder, H. Silva, K. Smith
{"title":"全系统热分析网格偏差的可分离性和参数不确定性","authors":"Benjamin Schroeder, H. Silva, K. Smith","doi":"10.1115/VVS2018-9339","DOIUrl":null,"url":null,"abstract":"When making computational simulation predictions of multiphysics engineering systems, sources of uncertainty in the prediction need to be acknowledged and included in the analysis within the current paradigm of striving for simulation credibility. A thermal analysis of an aerospace geometry was performed at Sandia National Laboratories. For this analysis, a verification, validation, and uncertainty quantification (VVUQ) workflow provided structure for the analysis, resulting in the quantification of significant uncertainty sources including spatial numerical error and material property parametric uncertainty. It was hypothesized that the parametric uncertainty and numerical errors were independent and separable for this application. This hypothesis was supported by performing uncertainty quantification (UQ) simulations at multiple mesh resolutions, while being limited by resources to minimize the number of medium and high resolution simulations. Based on this supported hypothesis, a prediction including parametric uncertainty and a systematic mesh bias is used to make a margin assessment that avoids unnecessary uncertainty obscuring the results and optimizes use of computing resources.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Separability of Mesh Bias and Parametric Uncertainty for a Full System Thermal Analysis\",\"authors\":\"Benjamin Schroeder, H. Silva, K. Smith\",\"doi\":\"10.1115/VVS2018-9339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When making computational simulation predictions of multiphysics engineering systems, sources of uncertainty in the prediction need to be acknowledged and included in the analysis within the current paradigm of striving for simulation credibility. A thermal analysis of an aerospace geometry was performed at Sandia National Laboratories. For this analysis, a verification, validation, and uncertainty quantification (VVUQ) workflow provided structure for the analysis, resulting in the quantification of significant uncertainty sources including spatial numerical error and material property parametric uncertainty. It was hypothesized that the parametric uncertainty and numerical errors were independent and separable for this application. This hypothesis was supported by performing uncertainty quantification (UQ) simulations at multiple mesh resolutions, while being limited by resources to minimize the number of medium and high resolution simulations. Based on this supported hypothesis, a prediction including parametric uncertainty and a systematic mesh bias is used to make a margin assessment that avoids unnecessary uncertainty obscuring the results and optimizes use of computing resources.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/VVS2018-9339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/VVS2018-9339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

在对多物理工程系统进行计算模拟预测时,需要承认预测中的不确定性来源,并将其纳入当前努力提高模拟可信度的范式中的分析中。桑迪亚国家实验室对航空航天几何结构进行了热分析。对于该分析,验证、验证和不确定度量化(VVUQ)工作流程为分析提供了结构,从而量化了重要的不确定源,包括空间数值误差和材料特性参数不确定性。假设参数不确定性和数值误差对于该应用是独立和可分离的。这一假设得到了以多个网格分辨率进行不确定性量化(UQ)模拟的支持,同时受到资源限制,以最大限度地减少中分辨率和高分辨率模拟的数量。基于这一支持的假设,使用包括参数不确定性和系统网格偏差的预测来进行边际评估,避免不必要的不确定性模糊结果,并优化计算资源的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separability of Mesh Bias and Parametric Uncertainty for a Full System Thermal Analysis
When making computational simulation predictions of multiphysics engineering systems, sources of uncertainty in the prediction need to be acknowledged and included in the analysis within the current paradigm of striving for simulation credibility. A thermal analysis of an aerospace geometry was performed at Sandia National Laboratories. For this analysis, a verification, validation, and uncertainty quantification (VVUQ) workflow provided structure for the analysis, resulting in the quantification of significant uncertainty sources including spatial numerical error and material property parametric uncertainty. It was hypothesized that the parametric uncertainty and numerical errors were independent and separable for this application. This hypothesis was supported by performing uncertainty quantification (UQ) simulations at multiple mesh resolutions, while being limited by resources to minimize the number of medium and high resolution simulations. Based on this supported hypothesis, a prediction including parametric uncertainty and a systematic mesh bias is used to make a margin assessment that avoids unnecessary uncertainty obscuring the results and optimizes use of computing resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信