地形上的1D和2D流路由

IF 1.2 Q4 REMOTE SENSING
L. Arge, Aaron Lowe, Svend C. Svendsen, P. Agarwal
{"title":"地形上的1D和2D流路由","authors":"L. Arge, Aaron Lowe, Svend C. Svendsen, P. Agarwal","doi":"10.1145/3539660","DOIUrl":null,"url":null,"abstract":"An important problem in terrain analysis is modeling how water flows across a terrain creating floods by forming channels and filling depressions. In this article, we study a number of flow-query-related problems: Given a terrain Σ, represented as a triangulated xy-monotone surface with n vertices, and a rain distribution R that may vary over time, determine how much water is flowing over a given vertex or edge as a function of time. We develop internal-memory as well as I/O-efficient algorithms for flow queries. This article contains four main algorithmic results: (i) An internal-memory algorithm for answering terrain-flow queries: Preprocess Σ into a linear-size data structure so given a rain distribution R, the flow-rate functions of all vertices and edges of Σ can be reported quickly. (ii) I/O-efficient algorithms for answering terrain-flow queries. (iii) An internal-memory algorithm for answering vertex-flow queries: Preprocess Σ into a linear-size data structure so given a rain distribution R, the flow-rate function of a vertex under the single-flow direction (SFD) model can be computed quickly. (iv) An efficient algorithm that, given a path 𝖯 in Σ and flow rate along 𝖯, computes the two-dimensional channel along which water flows. Additionally, we implement a version of the terrain-flow query and 2D channel algorithms and examine a number of queries on real terrains.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":"9 1","pages":"1 - 39"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1D and 2D Flow Routing on a Terrain\",\"authors\":\"L. Arge, Aaron Lowe, Svend C. Svendsen, P. Agarwal\",\"doi\":\"10.1145/3539660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important problem in terrain analysis is modeling how water flows across a terrain creating floods by forming channels and filling depressions. In this article, we study a number of flow-query-related problems: Given a terrain Σ, represented as a triangulated xy-monotone surface with n vertices, and a rain distribution R that may vary over time, determine how much water is flowing over a given vertex or edge as a function of time. We develop internal-memory as well as I/O-efficient algorithms for flow queries. This article contains four main algorithmic results: (i) An internal-memory algorithm for answering terrain-flow queries: Preprocess Σ into a linear-size data structure so given a rain distribution R, the flow-rate functions of all vertices and edges of Σ can be reported quickly. (ii) I/O-efficient algorithms for answering terrain-flow queries. (iii) An internal-memory algorithm for answering vertex-flow queries: Preprocess Σ into a linear-size data structure so given a rain distribution R, the flow-rate function of a vertex under the single-flow direction (SFD) model can be computed quickly. (iv) An efficient algorithm that, given a path 𝖯 in Σ and flow rate along 𝖯, computes the two-dimensional channel along which water flows. Additionally, we implement a version of the terrain-flow query and 2D channel algorithms and examine a number of queries on real terrains.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":\"9 1\",\"pages\":\"1 - 39\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

地形分析中的一个重要问题是模拟水如何通过形成沟渠和填满洼地流过地形,从而产生洪水。在本文中,我们研究了许多与流量查询相关的问题:给定地形Σ,表示为具有n个顶点的三角形xy单调表面,以及可能随时间变化的降雨分布R,确定在给定顶点或边缘上流过多少水作为时间的函数。我们为流查询开发了内存和I/ o高效算法。本文包含四个主要的算法结果:(i)用于回答地形流查询的内存算法:将Σ预处理为线性大小的数据结构,因此给定雨分布R,可以快速报告Σ的所有顶点和边的流量函数。(ii)用于回答地形流查询的I/ o高效算法。(iii)回答顶点流查询的内存算法:将Σ预处理成一个线性大小的数据结构,给定一个雨分布R,可以快速计算出单流向(SFD)模型下顶点的流量函数。(iv)一种有效的算法,给定Σ中的路径𝖯和𝖯的流速,计算水沿其流动的二维通道。此外,我们实现了地形流查询和2D通道算法的一个版本,并在真实地形上检查了许多查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
1D and 2D Flow Routing on a Terrain
An important problem in terrain analysis is modeling how water flows across a terrain creating floods by forming channels and filling depressions. In this article, we study a number of flow-query-related problems: Given a terrain Σ, represented as a triangulated xy-monotone surface with n vertices, and a rain distribution R that may vary over time, determine how much water is flowing over a given vertex or edge as a function of time. We develop internal-memory as well as I/O-efficient algorithms for flow queries. This article contains four main algorithmic results: (i) An internal-memory algorithm for answering terrain-flow queries: Preprocess Σ into a linear-size data structure so given a rain distribution R, the flow-rate functions of all vertices and edges of Σ can be reported quickly. (ii) I/O-efficient algorithms for answering terrain-flow queries. (iii) An internal-memory algorithm for answering vertex-flow queries: Preprocess Σ into a linear-size data structure so given a rain distribution R, the flow-rate function of a vertex under the single-flow direction (SFD) model can be computed quickly. (iv) An efficient algorithm that, given a path 𝖯 in Σ and flow rate along 𝖯, computes the two-dimensional channel along which water flows. Additionally, we implement a version of the terrain-flow query and 2D channel algorithms and examine a number of queries on real terrains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信