Syed Imdadul Hossain, M. C. Sportelli, R. Picca, N. Ditaranto, N. Cioffi
{"title":"电合成铜基纳米抗菌剂对生物膜的抑制作用","authors":"Syed Imdadul Hossain, M. C. Sportelli, R. Picca, N. Ditaranto, N. Cioffi","doi":"10.5194/biofilms9-149","DOIUrl":null,"url":null,"abstract":"<ol>\n<li><strong>S. I. Hossain<sup>1,3,*</sup>, M. C. Sportelli<sup>1,2,3</sup>, R. A. Picca<sup>1,3</sup>,</strong> <strong>N. Ditaranto<sup> 1,3</sup>, N. Cioffi<sup>1,3</sup></strong></li>\n</ol>\n<p><sup>1</sup>Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy; <sup>2</sup>CNR, Istituto di Fotonica e Nanotecnologie UOS, Bari, Italy;       <sup>3</sup>CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy.</p>\n<p> </p>\n<p>Copper nanoparticles (CuNPs) are considered as potential antimicrobial agents due to their improved stability and safety, and longer active period than that of organic nanomaterials, with multi-targeted mechanism of action [1]. Nevertheless, metal NPs can suffer from agglomeration, reducing their antibacterial activity [2]. Cu incorporation in inorganic substrates such as metal oxides or montmorillonite (MMT) plays an important role due to the possibilities of creating an antibacterial nanomaterial with slow release of Cu species in order to obtain a prolonged antibacterial activity. Therefore, CuNPs were synthesized via a rapid electrochemical method using the inorganic micro-powders as carrier. Characterization studies on the nanocomposite were done by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The as-prepared Cu-based nanocomposites could be employed for inhibiting the growth of biofilms.</p>\n<p><strong>References</strong></p>\n<ol>\n<li>Nanotechnology 25, (2014), 135101</li>\n<li>ACS Appl. Mater. Interfaces 4, (2012), 178–184</li>\n</ol>\n<p><strong>Acknowledgements</strong></p>\n<p>\"Financial support is acknowledged from European Union’s 2020 research <br /> and innovation program under the Marie Sklodowska-Curie Grant <br /> Agreement No. 813439.\"</p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrosynthetized copper based nanoantimicrobials for the inhibition of biofilms\",\"authors\":\"Syed Imdadul Hossain, M. C. Sportelli, R. Picca, N. Ditaranto, N. Cioffi\",\"doi\":\"10.5194/biofilms9-149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<ol>\\n<li><strong>S. I. Hossain<sup>1,3,*</sup>, M. C. Sportelli<sup>1,2,3</sup>, R. A. Picca<sup>1,3</sup>,</strong> <strong>N. Ditaranto<sup> 1,3</sup>, N. Cioffi<sup>1,3</sup></strong></li>\\n</ol>\\n<p><sup>1</sup>Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy; <sup>2</sup>CNR, Istituto di Fotonica e Nanotecnologie UOS, Bari, Italy;       <sup>3</sup>CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy.</p>\\n<p> </p>\\n<p>Copper nanoparticles (CuNPs) are considered as potential antimicrobial agents due to their improved stability and safety, and longer active period than that of organic nanomaterials, with multi-targeted mechanism of action [1]. Nevertheless, metal NPs can suffer from agglomeration, reducing their antibacterial activity [2]. Cu incorporation in inorganic substrates such as metal oxides or montmorillonite (MMT) plays an important role due to the possibilities of creating an antibacterial nanomaterial with slow release of Cu species in order to obtain a prolonged antibacterial activity. Therefore, CuNPs were synthesized via a rapid electrochemical method using the inorganic micro-powders as carrier. Characterization studies on the nanocomposite were done by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The as-prepared Cu-based nanocomposites could be employed for inhibiting the growth of biofilms.</p>\\n<p><strong>References</strong></p>\\n<ol>\\n<li>Nanotechnology 25, (2014), 135101</li>\\n<li>ACS Appl. Mater. Interfaces 4, (2012), 178–184</li>\\n</ol>\\n<p><strong>Acknowledgements</strong></p>\\n<p>\\\"Financial support is acknowledged from European Union’s 2020 research <br /> and innovation program under the Marie Sklodowska-Curie Grant <br /> Agreement No. 813439.\\\"</p>\",\"PeriodicalId\":87392,\"journal\":{\"name\":\"Biofilms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofilms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/biofilms9-149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/biofilms9-149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
胡思义1,3,*,M. C. Sportelli1,2,3, R. A. Picca1,3, N. Ditaranto 1,3, N. Cioffi1,31;degli Studi di Bari “Aldo Moro”,巴里,意大利;2法国国立大学光学与纳米技术研究所,意大利巴里;& # 160; & # 160; & # 160; & # 160; & # 160;3CSGI(胶体与表面科学中心)c/o Dept.化学系,via Orabona 4,70125 Bari, Italy. 铜纳米粒子(cu纳米粒子)被认为是潜在的抗菌药物,因为它们具有更高的稳定性和安全性,比有机纳米材料具有更长的活性期,具有多靶点的作用机制[10]。然而,金属NPs可能会出现结块,从而降低其抗菌活性。铜掺入到金属氧化物或蒙脱土(MMT)等无机底物中起着重要的作用,因为它有可能创造出一种Cu物种缓释的抗菌纳米材料,以获得持久的抗菌活性。因此,以无机微粉为载体,采用快速电化学方法合成了CuNPs。利用扫描电镜(SEM)、透射电镜(TEM)和x射线光电子能谱(XPS)对纳米复合材料进行了表征。所制备的cu基纳米复合材料可用于抑制生物膜的生长。纳米材料学报,(2014),1351 - 1351板牙。接口4,(2012),178–184致谢“根据Marie Sklodowska-Curie Grant 协议号813439,欧盟’2020年研究 和创新项目的资金支持得到了认可。”
Electrosynthetized copper based nanoantimicrobials for the inhibition of biofilms
S. I. Hossain1,3,*, M. C. Sportelli1,2,3, R. A. Picca1,3,N. Ditaranto 1,3, N. Cioffi1,3
1Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy; 2CNR, Istituto di Fotonica e Nanotecnologie UOS, Bari, Italy; 3CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy.
Copper nanoparticles (CuNPs) are considered as potential antimicrobial agents due to their improved stability and safety, and longer active period than that of organic nanomaterials, with multi-targeted mechanism of action [1]. Nevertheless, metal NPs can suffer from agglomeration, reducing their antibacterial activity [2]. Cu incorporation in inorganic substrates such as metal oxides or montmorillonite (MMT) plays an important role due to the possibilities of creating an antibacterial nanomaterial with slow release of Cu species in order to obtain a prolonged antibacterial activity. Therefore, CuNPs were synthesized via a rapid electrochemical method using the inorganic micro-powders as carrier. Characterization studies on the nanocomposite were done by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The as-prepared Cu-based nanocomposites could be employed for inhibiting the growth of biofilms.
References
Nanotechnology 25, (2014), 135101
ACS Appl. Mater. Interfaces 4, (2012), 178–184
Acknowledgements
"Financial support is acknowledged from European Union’s 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 813439."