{"title":"热点常数的上界","authors":"S. Steinerberger","doi":"10.4171/rmi/1350","DOIUrl":null,"url":null,"abstract":"Let D ⊂ R be a bounded, connected domain with smooth boundary and let −∆u = μ1u be the first nontrivial eigenfunction of the Laplace operator with Neumann boundary conditions. We prove ‖u‖L∞(D) ≤ 60 · ‖u‖L∞(∂D). This shows that the Hot Spots Conjecture cannot fail by an arbitrary factor. An example of Kleefeld shows that the optimal constant is at least 1 + 10−3.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An upper bound on the hot spots constant\",\"authors\":\"S. Steinerberger\",\"doi\":\"10.4171/rmi/1350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D ⊂ R be a bounded, connected domain with smooth boundary and let −∆u = μ1u be the first nontrivial eigenfunction of the Laplace operator with Neumann boundary conditions. We prove ‖u‖L∞(D) ≤ 60 · ‖u‖L∞(∂D). This shows that the Hot Spots Conjecture cannot fail by an arbitrary factor. An example of Kleefeld shows that the optimal constant is at least 1 + 10−3.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1350\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1350","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let D ⊂ R be a bounded, connected domain with smooth boundary and let −∆u = μ1u be the first nontrivial eigenfunction of the Laplace operator with Neumann boundary conditions. We prove ‖u‖L∞(D) ≤ 60 · ‖u‖L∞(∂D). This shows that the Hot Spots Conjecture cannot fail by an arbitrary factor. An example of Kleefeld shows that the optimal constant is at least 1 + 10−3.
期刊介绍:
Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.