当B为简单连续尺度时exu(⋅,B)的函子性质

IF 0.7 4区 数学 Q2 MATHEMATICS
P. W. Ng, Tracy Robin
{"title":"当B为简单连续尺度时exu(⋅,B)的函子性质","authors":"P. W. Ng, Tracy Robin","doi":"10.7900/jot.2018mar18.2223","DOIUrl":null,"url":null,"abstract":"In this note we define two functors Ext and Extu which capture unitary equivalence classes of extensions in a manner which is finer than KK1. We prove that for every separable nuclear C∗-algebra A, and for every σ-unital nonunital simple continuous scale C∗-algebra B, Ext(A,B) is an abelian group. We have a similar result for Extu. We study some functorial properties of the covariant functor X↦Extu(C(X),B), where X ranges over the category of compact metric spaces.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Functorial properties of Extu(⋅,B) when B is simple with continuous scale\",\"authors\":\"P. W. Ng, Tracy Robin\",\"doi\":\"10.7900/jot.2018mar18.2223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we define two functors Ext and Extu which capture unitary equivalence classes of extensions in a manner which is finer than KK1. We prove that for every separable nuclear C∗-algebra A, and for every σ-unital nonunital simple continuous scale C∗-algebra B, Ext(A,B) is an abelian group. We have a similar result for Extu. We study some functorial properties of the covariant functor X↦Extu(C(X),B), where X ranges over the category of compact metric spaces.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2018mar18.2223\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2018mar18.2223","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

本文定义了两个函子Ext和Extu,它们以比KK1更精细的方式捕获扩展的酉等价类。证明了对于每一个可分离核C * -代数A和每一个σ-一元非一元简单连续尺度C * -代数B, Ext(A,B)是一个阿贝尔群。exu也有类似的结果。研究了协变函子X∈exu (C(X),B)的一些函子性质,其中X作用于紧度量空间的范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functorial properties of Extu(⋅,B) when B is simple with continuous scale
In this note we define two functors Ext and Extu which capture unitary equivalence classes of extensions in a manner which is finer than KK1. We prove that for every separable nuclear C∗-algebra A, and for every σ-unital nonunital simple continuous scale C∗-algebra B, Ext(A,B) is an abelian group. We have a similar result for Extu. We study some functorial properties of the covariant functor X↦Extu(C(X),B), where X ranges over the category of compact metric spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信