{"title":"这些不是你要找的结果:纵向数据分析中的因果关系和人内/人之间的区别","authors":"J. Rohrer, K. Murayama","doi":"10.1177/25152459221140842","DOIUrl":null,"url":null,"abstract":"In psychological science, researchers often pay particular attention to the distinction between within- and between-persons relationships in longitudinal data analysis. Here, we aim to clarify the relationship between the within- and between-persons distinction and causal inference and show that the distinction is informative but does not play a decisive role in causal inference. Our main points are threefold. First, within-persons data are not necessary for causal inference; for example, between-persons experiments can inform about (average) causal effects. Second, within-persons data are not sufficient for causal inference; for example, time-varying confounders can lead to spurious within-persons associations. Finally, despite not being sufficient, within-persons data can be tremendously helpful for causal inference. We provide pointers to help readers navigate the more technical literature on longitudinal models and conclude with a call for more conceptual clarity: Instead of letting statistical models dictate which substantive questions researchers ask, researchers should start with well-defined theoretical estimands, which in turn determine both study design and data analysis.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":"6 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"These Are Not the Effects You Are Looking for: Causality and the Within-/Between-Persons Distinction in Longitudinal Data Analysis\",\"authors\":\"J. Rohrer, K. Murayama\",\"doi\":\"10.1177/25152459221140842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In psychological science, researchers often pay particular attention to the distinction between within- and between-persons relationships in longitudinal data analysis. Here, we aim to clarify the relationship between the within- and between-persons distinction and causal inference and show that the distinction is informative but does not play a decisive role in causal inference. Our main points are threefold. First, within-persons data are not necessary for causal inference; for example, between-persons experiments can inform about (average) causal effects. Second, within-persons data are not sufficient for causal inference; for example, time-varying confounders can lead to spurious within-persons associations. Finally, despite not being sufficient, within-persons data can be tremendously helpful for causal inference. We provide pointers to help readers navigate the more technical literature on longitudinal models and conclude with a call for more conceptual clarity: Instead of letting statistical models dictate which substantive questions researchers ask, researchers should start with well-defined theoretical estimands, which in turn determine both study design and data analysis.\",\"PeriodicalId\":55645,\"journal\":{\"name\":\"Advances in Methods and Practices in Psychological Science\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methods and Practices in Psychological Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/25152459221140842\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/25152459221140842","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
These Are Not the Effects You Are Looking for: Causality and the Within-/Between-Persons Distinction in Longitudinal Data Analysis
In psychological science, researchers often pay particular attention to the distinction between within- and between-persons relationships in longitudinal data analysis. Here, we aim to clarify the relationship between the within- and between-persons distinction and causal inference and show that the distinction is informative but does not play a decisive role in causal inference. Our main points are threefold. First, within-persons data are not necessary for causal inference; for example, between-persons experiments can inform about (average) causal effects. Second, within-persons data are not sufficient for causal inference; for example, time-varying confounders can lead to spurious within-persons associations. Finally, despite not being sufficient, within-persons data can be tremendously helpful for causal inference. We provide pointers to help readers navigate the more technical literature on longitudinal models and conclude with a call for more conceptual clarity: Instead of letting statistical models dictate which substantive questions researchers ask, researchers should start with well-defined theoretical estimands, which in turn determine both study design and data analysis.
期刊介绍:
In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions.
The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science.
The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies.
Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.