Icaro Wilker, M. A. Rabelo, M. A. Angotti, C. Ribas
{"title":"单独去除一水硬铝石的蚂蚁物种是更有效的去除剂","authors":"Icaro Wilker, M. A. Rabelo, M. A. Angotti, C. Ribas","doi":"10.13102/sociobiology.v69i3.8308","DOIUrl":null,"url":null,"abstract":"Secondary diaspore removal on the ground is an important ecosystem process. In this process, solitary foraging ants with larger body sizes are more efficient because they may remove more diaspores, faster and carry them at greater distances. Therefore, we sought to test the effects of the sizes of the morphological traits of ants, removal strategy, and nest distance on secondary diaspore removal, testing hypotheses related to the efficiency of this process. We evaluated the removal of artificial diaspores by ants in 15 areas of Cerrado sensu stricto (tropical savanna), collecting data on diaspore removal strategy (solitary or group), nest distance, diaspore discovery time, diaspore removal time, and the number of diaspores removed. Larger ants tended to remove diaspores alone and remove diaspores faster than smaller ones. Ants that removed diaspores alone removed more diaspores than ants that removed diaspores in groups. However, we did not find a linear relationship between ant size and diaspore removal. This is likely due to a limitation on, or a preference by larger ants for removing larger diaspores, while the smaller diaspores may have hindered manipulation or been less attractive to larger ants. Thus, the removal strategy was the best predictor of efficient diaspore removal performance, where the solitary foraging ants discover and remove diaspores quickly and remove more diaspores, mainly from the closest nests to the sampling point. However, the benefits (or not) of removing more diaspores still need to be evaluated.","PeriodicalId":21971,"journal":{"name":"Sociobiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ant species that remove diaspores alone are more efficient removers\",\"authors\":\"Icaro Wilker, M. A. Rabelo, M. A. Angotti, C. Ribas\",\"doi\":\"10.13102/sociobiology.v69i3.8308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secondary diaspore removal on the ground is an important ecosystem process. In this process, solitary foraging ants with larger body sizes are more efficient because they may remove more diaspores, faster and carry them at greater distances. Therefore, we sought to test the effects of the sizes of the morphological traits of ants, removal strategy, and nest distance on secondary diaspore removal, testing hypotheses related to the efficiency of this process. We evaluated the removal of artificial diaspores by ants in 15 areas of Cerrado sensu stricto (tropical savanna), collecting data on diaspore removal strategy (solitary or group), nest distance, diaspore discovery time, diaspore removal time, and the number of diaspores removed. Larger ants tended to remove diaspores alone and remove diaspores faster than smaller ones. Ants that removed diaspores alone removed more diaspores than ants that removed diaspores in groups. However, we did not find a linear relationship between ant size and diaspore removal. This is likely due to a limitation on, or a preference by larger ants for removing larger diaspores, while the smaller diaspores may have hindered manipulation or been less attractive to larger ants. Thus, the removal strategy was the best predictor of efficient diaspore removal performance, where the solitary foraging ants discover and remove diaspores quickly and remove more diaspores, mainly from the closest nests to the sampling point. However, the benefits (or not) of removing more diaspores still need to be evaluated.\",\"PeriodicalId\":21971,\"journal\":{\"name\":\"Sociobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociobiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13102/sociobiology.v69i3.8308\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociobiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13102/sociobiology.v69i3.8308","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Ant species that remove diaspores alone are more efficient removers
Secondary diaspore removal on the ground is an important ecosystem process. In this process, solitary foraging ants with larger body sizes are more efficient because they may remove more diaspores, faster and carry them at greater distances. Therefore, we sought to test the effects of the sizes of the morphological traits of ants, removal strategy, and nest distance on secondary diaspore removal, testing hypotheses related to the efficiency of this process. We evaluated the removal of artificial diaspores by ants in 15 areas of Cerrado sensu stricto (tropical savanna), collecting data on diaspore removal strategy (solitary or group), nest distance, diaspore discovery time, diaspore removal time, and the number of diaspores removed. Larger ants tended to remove diaspores alone and remove diaspores faster than smaller ones. Ants that removed diaspores alone removed more diaspores than ants that removed diaspores in groups. However, we did not find a linear relationship between ant size and diaspore removal. This is likely due to a limitation on, or a preference by larger ants for removing larger diaspores, while the smaller diaspores may have hindered manipulation or been less attractive to larger ants. Thus, the removal strategy was the best predictor of efficient diaspore removal performance, where the solitary foraging ants discover and remove diaspores quickly and remove more diaspores, mainly from the closest nests to the sampling point. However, the benefits (or not) of removing more diaspores still need to be evaluated.
期刊介绍:
SOCIOBIOLOGY publishes high quality articles that significantly contribute to the knowledge of Entomology, with emphasis on social insects. Articles previously submitted to other journals are not accepted. SOCIOBIOLOGY publishes original research papers and invited review articles on all aspects related to the biology, evolution and systematics of social and pre-social insects (Ants, Termites, Bees and Wasps). The journal is currently expanding its scope to incorporate the publication of articles dealing with other arthropods that exhibit sociality. Articles may cover a range of subjects such as ecology, ethology, morphology, population genetics, physiology, toxicology, reproduction, sociobiology, caste differentiation as well as economic impact and pest management.