{"title":"偏类型理论中的完全性","authors":"Petr Kuchyňka, J. Raclavský","doi":"10.1093/logcom/exac089","DOIUrl":null,"url":null,"abstract":"\n The present paper provides a completeness proof for a system of higher-order logic framed within partial type theory. The framework is a modification of Tichý’s extension of Church’s simple type theory, equipped with his innovative natural deduction system in sequent style. The system deals with both total and partial (multiargument) functions-as-mappings and also accommodates algorithmic computations arriving at various objects of the framework. The partiality of a function or a failure of a computation is not represented by a postulated null object such as the third truth value. The logical operators of the system are classical. Another welcome feature of this expressive system is that its consequence relation is monotonic.","PeriodicalId":50162,"journal":{"name":"Journal of Logic and Computation","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Completeness in partial type theory\",\"authors\":\"Petr Kuchyňka, J. Raclavský\",\"doi\":\"10.1093/logcom/exac089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The present paper provides a completeness proof for a system of higher-order logic framed within partial type theory. The framework is a modification of Tichý’s extension of Church’s simple type theory, equipped with his innovative natural deduction system in sequent style. The system deals with both total and partial (multiargument) functions-as-mappings and also accommodates algorithmic computations arriving at various objects of the framework. The partiality of a function or a failure of a computation is not represented by a postulated null object such as the third truth value. The logical operators of the system are classical. Another welcome feature of this expressive system is that its consequence relation is monotonic.\",\"PeriodicalId\":50162,\"journal\":{\"name\":\"Journal of Logic and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logic and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1093/logcom/exac089\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic and Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1093/logcom/exac089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The present paper provides a completeness proof for a system of higher-order logic framed within partial type theory. The framework is a modification of Tichý’s extension of Church’s simple type theory, equipped with his innovative natural deduction system in sequent style. The system deals with both total and partial (multiargument) functions-as-mappings and also accommodates algorithmic computations arriving at various objects of the framework. The partiality of a function or a failure of a computation is not represented by a postulated null object such as the third truth value. The logical operators of the system are classical. Another welcome feature of this expressive system is that its consequence relation is monotonic.
期刊介绍:
Logic has found application in virtually all aspects of Information Technology, from software engineering and hardware to programming and artificial intelligence. Indeed, logic, artificial intelligence and theoretical computing are influencing each other to the extent that a new interdisciplinary area of Logic and Computation is emerging.
The Journal of Logic and Computation aims to promote the growth of logic and computing, including, among others, the following areas of interest: Logical Systems, such as classical and non-classical logic, constructive logic, categorical logic, modal logic, type theory, feasible maths.... Logical issues in logic programming, knowledge-based systems and automated reasoning; logical issues in knowledge representation, such as non-monotonic reasoning and systems of knowledge and belief; logics and semantics of programming; specification and verification of programs and systems; applications of logic in hardware and VLSI, natural language, concurrent computation, planning, and databases. The bulk of the content is technical scientific papers, although letters, reviews, and discussions, as well as relevant conference reviews, are included.