用于每小时太阳辐射估算的最优人工神经网络配置

Q2 Computer Science
Mostefaoui Mohamed Dhiaeddine, Benmouiza Khalil, Oubbati Youcef
{"title":"用于每小时太阳辐射估算的最优人工神经网络配置","authors":"Mostefaoui Mohamed Dhiaeddine, Benmouiza Khalil, Oubbati Youcef","doi":"10.11591/ijece.v13i5.pp4878-4885","DOIUrl":null,"url":null,"abstract":"Solar energy is widely used in order to generate clean electric energy. However, due to its intermittent nature, this resource is only inserted in a limited way within the electrical networks. To increase the share of solar energy in the energy balance and allow better management of its production, it is necessary to know precisely the available solar potential at a fine time step to take into account all these stochastic variations. In this paper, a comparison between different artificial neural network (ANN) configurations is elaborated to estimate the hourly solar irradiation. An investigation of the optimal neurons and layers is investigated. To this end, feedforward neural network, cascade forward neural network and fitting neural network have been applied for this purpose. In this context, we have used different meteorological parameters to estimate the hourly global solar irirradiation in the region of Laghouat, Algeria. The validation process shows that choosing the cascade forward neural network two inputs gives an R2 value equal to 97.24% and an normalized root mean square error (NRMSE) equals to 0.1678 compared to the results of three inputs, which gives an R2 value equaled to 95.54% and an NRMSE equals to 0.2252. The comparison between different existing methods in literature show the goodness of the proposed models.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal artificial neural network configurations for hourly solar irradiation estimation\",\"authors\":\"Mostefaoui Mohamed Dhiaeddine, Benmouiza Khalil, Oubbati Youcef\",\"doi\":\"10.11591/ijece.v13i5.pp4878-4885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar energy is widely used in order to generate clean electric energy. However, due to its intermittent nature, this resource is only inserted in a limited way within the electrical networks. To increase the share of solar energy in the energy balance and allow better management of its production, it is necessary to know precisely the available solar potential at a fine time step to take into account all these stochastic variations. In this paper, a comparison between different artificial neural network (ANN) configurations is elaborated to estimate the hourly solar irradiation. An investigation of the optimal neurons and layers is investigated. To this end, feedforward neural network, cascade forward neural network and fitting neural network have been applied for this purpose. In this context, we have used different meteorological parameters to estimate the hourly global solar irirradiation in the region of Laghouat, Algeria. The validation process shows that choosing the cascade forward neural network two inputs gives an R2 value equal to 97.24% and an normalized root mean square error (NRMSE) equals to 0.1678 compared to the results of three inputs, which gives an R2 value equaled to 95.54% and an NRMSE equals to 0.2252. The comparison between different existing methods in literature show the goodness of the proposed models.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp4878-4885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4878-4885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

太阳能被广泛用于产生清洁的电能。然而,由于其间歇性,这种资源仅以有限的方式插入电网中。为了增加太阳能在能源平衡中的份额并更好地管理其生产,有必要在一个精细的时间步长准确地了解可用的太阳能潜力,以考虑所有这些随机变化。本文详细介绍了不同人工神经网络配置之间的比较,以估计每小时的太阳辐射量。研究了最佳神经元和层。为此,前馈神经网络、级联前向神经网络和拟合神经网络已被应用于此。在这种情况下,我们使用了不同的气象参数来估计阿尔及利亚拉古亚特地区每小时的全球太阳辐射。验证过程表明,与三个输入的结果相比,选择级联正向神经网络的两个输入给出的R2值等于97.24%,归一化均方根误差(NRMSE)等于0.1678,R2值等于95.54%,NRMSE等于0.2252。文献中现有的不同方法之间的比较表明了所提出的模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal artificial neural network configurations for hourly solar irradiation estimation
Solar energy is widely used in order to generate clean electric energy. However, due to its intermittent nature, this resource is only inserted in a limited way within the electrical networks. To increase the share of solar energy in the energy balance and allow better management of its production, it is necessary to know precisely the available solar potential at a fine time step to take into account all these stochastic variations. In this paper, a comparison between different artificial neural network (ANN) configurations is elaborated to estimate the hourly solar irradiation. An investigation of the optimal neurons and layers is investigated. To this end, feedforward neural network, cascade forward neural network and fitting neural network have been applied for this purpose. In this context, we have used different meteorological parameters to estimate the hourly global solar irirradiation in the region of Laghouat, Algeria. The validation process shows that choosing the cascade forward neural network two inputs gives an R2 value equal to 97.24% and an normalized root mean square error (NRMSE) equals to 0.1678 compared to the results of three inputs, which gives an R2 value equaled to 95.54% and an NRMSE equals to 0.2252. The comparison between different existing methods in literature show the goodness of the proposed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信