从3种不同哺乳动物的初乳中分离的乳酸菌的益生菌潜力

IF 1.8 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Amal Dbeibia, A. Mahdhi, Safa Jdidi, Khadijah A. Altammar, Tarek Zmanter, R. Mzoughi, Chédia Jabeur
{"title":"从3种不同哺乳动物的初乳中分离的乳酸菌的益生菌潜力","authors":"Amal Dbeibia, A. Mahdhi, Safa Jdidi, Khadijah A. Altammar, Tarek Zmanter, R. Mzoughi, Chédia Jabeur","doi":"10.1080/08905436.2023.2202751","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study aimed to investigate the in vitro properties of lactic acid bacteria isolated from colostrum samples of goat, sheep and cow. Four isolates of lactic acid bacteria identified through 16S rDNA sequencing were screened for probiotic potential including their enzymatic activities (hemolytic, DNase activity, API ZYM profiling and tolerance to the gastrointestinal conditions), their antimicrobial activities, their adhesion properties through biofilm formation capacity, auto-aggregation and co-aggregation with pathogens bacteria and hydrophobicity. They were also tested for their antibiotic susceptibility and antioxidant power. All the strains (ADG1b Lactobacillus gasseri, ZPana Lactiplantibacillus plantarum, S2ana Enterococcus hirae and ZGana Lactobacillus gasseri) demonstrated probiotic properties and they could resist different gastrointestinal conditions. They displayed good antimicrobial activities. Furthermore, they had high antioxidant power, although strain dependent. The results of this study showed that L. gasseri (ADG1b) is the most promising probiotic.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"37 1","pages":"166 - 190"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probiotic potential of lactic acid bacteria isolated from colostrum of 3 different mammals\",\"authors\":\"Amal Dbeibia, A. Mahdhi, Safa Jdidi, Khadijah A. Altammar, Tarek Zmanter, R. Mzoughi, Chédia Jabeur\",\"doi\":\"10.1080/08905436.2023.2202751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study aimed to investigate the in vitro properties of lactic acid bacteria isolated from colostrum samples of goat, sheep and cow. Four isolates of lactic acid bacteria identified through 16S rDNA sequencing were screened for probiotic potential including their enzymatic activities (hemolytic, DNase activity, API ZYM profiling and tolerance to the gastrointestinal conditions), their antimicrobial activities, their adhesion properties through biofilm formation capacity, auto-aggregation and co-aggregation with pathogens bacteria and hydrophobicity. They were also tested for their antibiotic susceptibility and antioxidant power. All the strains (ADG1b Lactobacillus gasseri, ZPana Lactiplantibacillus plantarum, S2ana Enterococcus hirae and ZGana Lactobacillus gasseri) demonstrated probiotic properties and they could resist different gastrointestinal conditions. They displayed good antimicrobial activities. Furthermore, they had high antioxidant power, although strain dependent. The results of this study showed that L. gasseri (ADG1b) is the most promising probiotic.\",\"PeriodicalId\":12347,\"journal\":{\"name\":\"Food Biotechnology\",\"volume\":\"37 1\",\"pages\":\"166 - 190\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/08905436.2023.2202751\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2023.2202751","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究旨在研究山羊、绵羊和奶牛初乳乳酸菌的体外特性。对通过16S rDNA测序鉴定的4株乳酸菌进行了益生菌潜力的筛选,包括酶活性(溶血酶活性、dna酶活性、API ZYM谱和对胃肠道疾病的耐受性)、抗菌活性、通过生物膜形成的粘附性能、与病原菌的自聚集和共聚集以及疏水性。还测试了它们的抗生素敏感性和抗氧化能力。所有菌株(ADG1b干酪乳杆菌、ZPana干酪乳杆菌、S2ana干酪肠球菌和ZGana干酪乳杆菌)均表现出益生菌特性,并能抵抗不同的胃肠道疾病。它们具有良好的抗菌活性。此外,尽管菌株依赖,但它们具有较高的抗氧化能力。本研究结果表明,L. gasseri (ADG1b)是最有应用前景的益生菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probiotic potential of lactic acid bacteria isolated from colostrum of 3 different mammals
ABSTRACT This study aimed to investigate the in vitro properties of lactic acid bacteria isolated from colostrum samples of goat, sheep and cow. Four isolates of lactic acid bacteria identified through 16S rDNA sequencing were screened for probiotic potential including their enzymatic activities (hemolytic, DNase activity, API ZYM profiling and tolerance to the gastrointestinal conditions), their antimicrobial activities, their adhesion properties through biofilm formation capacity, auto-aggregation and co-aggregation with pathogens bacteria and hydrophobicity. They were also tested for their antibiotic susceptibility and antioxidant power. All the strains (ADG1b Lactobacillus gasseri, ZPana Lactiplantibacillus plantarum, S2ana Enterococcus hirae and ZGana Lactobacillus gasseri) demonstrated probiotic properties and they could resist different gastrointestinal conditions. They displayed good antimicrobial activities. Furthermore, they had high antioxidant power, although strain dependent. The results of this study showed that L. gasseri (ADG1b) is the most promising probiotic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Biotechnology
Food Biotechnology 工程技术-生物工程与应用微生物
CiteScore
3.80
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production. Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published. Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信