滤饼厚度和压力对煤矸石浆过滤的影响

Q2 Materials Science
G. Raman, M. Klima
{"title":"滤饼厚度和压力对煤矸石浆过滤的影响","authors":"G. Raman, M. Klima","doi":"10.19150/MMP.8461","DOIUrl":null,"url":null,"abstract":"The effects of pressure and cake thickness were studied using a split-plot design for pressure filtration of a fine refuse slurry obtained from a bituminous coal preparation facility. Pressure filtration offers the potential to significantly reduce the moisture content of the fine refuse stream with the addition of little to no flocculants, thereby minimizing the volume of refuse stored in impoundments and providing a recycle water stream for use within the plant. Experimental results showed that the final cake moisture decreased with increase in pressure and decrease in cake thickness. In addition, specific cake resistances calculated for the various tests indicated an increasing trend with increasing pressure and decreasing cake thickness. With increase in cake thickness, an increase in cake moisture and the weight of solids deposited in the cake was observed. An ANOVA analysis indicated that both cake thickness and pressure significantly affected the cake moisture, while only cake thickness statistically influenced the weight of solids in the cake. A regression model was developed with an R2 value of about 0.99 to relate cake thickness, the single largest statistically significant factor, with the weight of solids in the cake. Filter capacities were calculated in terms of the solids deposited per unit time based on a product specification of 25 percent cake moisture, and it was observed that the thinnest cake had the highest filter capacity.","PeriodicalId":18536,"journal":{"name":"Minerals & Metallurgical Processing","volume":"35 1","pages":"125-132"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.19150/MMP.8461","citationCount":"2","resultStr":"{\"title\":\"Effects of cake thickness and pressure on the filtration of coal refuse slurry\",\"authors\":\"G. Raman, M. Klima\",\"doi\":\"10.19150/MMP.8461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of pressure and cake thickness were studied using a split-plot design for pressure filtration of a fine refuse slurry obtained from a bituminous coal preparation facility. Pressure filtration offers the potential to significantly reduce the moisture content of the fine refuse stream with the addition of little to no flocculants, thereby minimizing the volume of refuse stored in impoundments and providing a recycle water stream for use within the plant. Experimental results showed that the final cake moisture decreased with increase in pressure and decrease in cake thickness. In addition, specific cake resistances calculated for the various tests indicated an increasing trend with increasing pressure and decreasing cake thickness. With increase in cake thickness, an increase in cake moisture and the weight of solids deposited in the cake was observed. An ANOVA analysis indicated that both cake thickness and pressure significantly affected the cake moisture, while only cake thickness statistically influenced the weight of solids in the cake. A regression model was developed with an R2 value of about 0.99 to relate cake thickness, the single largest statistically significant factor, with the weight of solids in the cake. Filter capacities were calculated in terms of the solids deposited per unit time based on a product specification of 25 percent cake moisture, and it was observed that the thinnest cake had the highest filter capacity.\",\"PeriodicalId\":18536,\"journal\":{\"name\":\"Minerals & Metallurgical Processing\",\"volume\":\"35 1\",\"pages\":\"125-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.19150/MMP.8461\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals & Metallurgical Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19150/MMP.8461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals & Metallurgical Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19150/MMP.8461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

摘要

采用分块设计对从烟煤制备设备获得的细垃圾浆进行压滤,研究了压力和滤饼厚度的影响。压力过滤提供了在添加很少或不添加絮凝剂的情况下显著降低细垃圾流的水分含量的潜力,从而最大限度地减少储存在蓄水池中的垃圾体积,并提供在工厂内使用的再循环水流。实验结果表明,随着压力的增加和滤饼厚度的减小,最终滤饼的含水量减小。此外,为各种试验计算的特定滤饼阻力表明,随着压力的增加和滤饼厚度的减小,有增加的趋势。随着滤饼厚度的增加,观察到滤饼水分和沉积在滤饼中的固体重量的增加。方差分析表明,滤饼厚度和压力都显著影响滤饼水分,而只有滤饼厚度在统计上影响滤饼中固体的重量。开发了一个R2值约为0.99的回归模型,将滤饼厚度(最大的统计显著因素)与滤饼中固体的重量联系起来。根据25%滤饼水分的产品规格,根据每单位时间沉积的固体计算过滤能力,观察到最薄的滤饼具有最高的过滤能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of cake thickness and pressure on the filtration of coal refuse slurry
The effects of pressure and cake thickness were studied using a split-plot design for pressure filtration of a fine refuse slurry obtained from a bituminous coal preparation facility. Pressure filtration offers the potential to significantly reduce the moisture content of the fine refuse stream with the addition of little to no flocculants, thereby minimizing the volume of refuse stored in impoundments and providing a recycle water stream for use within the plant. Experimental results showed that the final cake moisture decreased with increase in pressure and decrease in cake thickness. In addition, specific cake resistances calculated for the various tests indicated an increasing trend with increasing pressure and decreasing cake thickness. With increase in cake thickness, an increase in cake moisture and the weight of solids deposited in the cake was observed. An ANOVA analysis indicated that both cake thickness and pressure significantly affected the cake moisture, while only cake thickness statistically influenced the weight of solids in the cake. A regression model was developed with an R2 value of about 0.99 to relate cake thickness, the single largest statistically significant factor, with the weight of solids in the cake. Filter capacities were calculated in terms of the solids deposited per unit time based on a product specification of 25 percent cake moisture, and it was observed that the thinnest cake had the highest filter capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerals & Metallurgical Processing
Minerals & Metallurgical Processing 工程技术-矿业与矿物加工
CiteScore
0.84
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: For over twenty-five years, M&MP has been your source for the newest thinking in the processing of minerals and metals. We cover the latest developments in a wide range of applicable disciplines, from metallurgy to computer science to environmental engineering. Our authors, experts from industry, academia and the government, present state-of-the-art research from around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信