基于残差函数的分数阶Logistic方程的高级解析处理

IF 1.4 Q2 MATHEMATICS, APPLIED
Saleh Alshammari, M. Al‐Smadi, Mohammad Al Shammari, I. Hashim, M. A. Alias
{"title":"基于残差函数的分数阶Logistic方程的高级解析处理","authors":"Saleh Alshammari, M. Al‐Smadi, Mohammad Al Shammari, I. Hashim, M. A. Alias","doi":"10.1155/2019/7609879","DOIUrl":null,"url":null,"abstract":"In this article, an analytical reliable treatment based on the concept of residual error functions is employed to address the series solution of the differential logistic system in the fractional sense. The proposed technique is a combination of the generalized Taylor series and minimizing the residual error function. The solution methodology depends on the generation of a fractional expansion in an effective convergence formula, as well as on the optimization of truncated errors,Resqjt, through the use of repeated Caputo derivatives without any restrictive assumptions of system nature. To achieve this, some logistic patterns are tested to demonstrate the reliability and applicability of the suggested approach. Numerical comparison depicts that the proposed technique has high accuracy and less computational effect and is more efficient.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7609879","citationCount":"10","resultStr":"{\"title\":\"Advanced Analytical Treatment of Fractional Logistic Equations Based on Residual Error Functions\",\"authors\":\"Saleh Alshammari, M. Al‐Smadi, Mohammad Al Shammari, I. Hashim, M. A. Alias\",\"doi\":\"10.1155/2019/7609879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an analytical reliable treatment based on the concept of residual error functions is employed to address the series solution of the differential logistic system in the fractional sense. The proposed technique is a combination of the generalized Taylor series and minimizing the residual error function. The solution methodology depends on the generation of a fractional expansion in an effective convergence formula, as well as on the optimization of truncated errors,Resqjt, through the use of repeated Caputo derivatives without any restrictive assumptions of system nature. To achieve this, some logistic patterns are tested to demonstrate the reliability and applicability of the suggested approach. Numerical comparison depicts that the proposed technique has high accuracy and less computational effect and is more efficient.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/7609879\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/7609879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/7609879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 10

摘要

本文采用基于残差函数概念的分析可靠处理方法来求解分数意义上的微分逻辑系统的级数解。所提出的技术是广义泰勒级数和最小化残差函数的结合。求解方法取决于有效收敛公式中分数展开的生成,以及通过使用重复Caputo导数优化截断误差Resqjt,而不需要任何系统性质的限制性假设。为了实现这一点,对一些逻辑模式进行了测试,以证明所建议方法的可靠性和适用性。数值比较表明,该方法精度高,计算量小,效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Analytical Treatment of Fractional Logistic Equations Based on Residual Error Functions
In this article, an analytical reliable treatment based on the concept of residual error functions is employed to address the series solution of the differential logistic system in the fractional sense. The proposed technique is a combination of the generalized Taylor series and minimizing the residual error function. The solution methodology depends on the generation of a fractional expansion in an effective convergence formula, as well as on the optimization of truncated errors,Resqjt, through the use of repeated Caputo derivatives without any restrictive assumptions of system nature. To achieve this, some logistic patterns are tested to demonstrate the reliability and applicability of the suggested approach. Numerical comparison depicts that the proposed technique has high accuracy and less computational effect and is more efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信