{"title":"网络购物中的消费者欺诈:通过数据挖掘检测风险指标","authors":"T. Knuth, Dennis C. Ahrholdt","doi":"10.1080/10864415.2022.2076199","DOIUrl":null,"url":null,"abstract":"ABSTRACT Consumer fraud in online shopping has become a major problem and severe challenge for online retailers. However, detection lags behind — for academia and practice — and data-driven knowledge about risk indicators in transaction data is still very limited. Thus, this study focuses on the empirical data-based identification of consumer fraud risk indicators and combinations in online shopping transaction data. We demonstrate the use of a decision tree as a data mining technique for analysis of data from one of the world’s largest online retailers. Thereby, several patterns of fraud that improve separation of online shopping transactions into fraudulent and legitimate cases are identified. Thus, results can guide the choice of variables and design of fraud prevention actions and systems in future practical and theoretical work.","PeriodicalId":13928,"journal":{"name":"International Journal of Electronic Commerce","volume":"26 1","pages":"388 - 411"},"PeriodicalIF":4.2000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Consumer Fraud in Online Shopping: Detecting Risk Indicators through Data Mining\",\"authors\":\"T. Knuth, Dennis C. Ahrholdt\",\"doi\":\"10.1080/10864415.2022.2076199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Consumer fraud in online shopping has become a major problem and severe challenge for online retailers. However, detection lags behind — for academia and practice — and data-driven knowledge about risk indicators in transaction data is still very limited. Thus, this study focuses on the empirical data-based identification of consumer fraud risk indicators and combinations in online shopping transaction data. We demonstrate the use of a decision tree as a data mining technique for analysis of data from one of the world’s largest online retailers. Thereby, several patterns of fraud that improve separation of online shopping transactions into fraudulent and legitimate cases are identified. Thus, results can guide the choice of variables and design of fraud prevention actions and systems in future practical and theoretical work.\",\"PeriodicalId\":13928,\"journal\":{\"name\":\"International Journal of Electronic Commerce\",\"volume\":\"26 1\",\"pages\":\"388 - 411\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronic Commerce\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1080/10864415.2022.2076199\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronic Commerce","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1080/10864415.2022.2076199","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
Consumer Fraud in Online Shopping: Detecting Risk Indicators through Data Mining
ABSTRACT Consumer fraud in online shopping has become a major problem and severe challenge for online retailers. However, detection lags behind — for academia and practice — and data-driven knowledge about risk indicators in transaction data is still very limited. Thus, this study focuses on the empirical data-based identification of consumer fraud risk indicators and combinations in online shopping transaction data. We demonstrate the use of a decision tree as a data mining technique for analysis of data from one of the world’s largest online retailers. Thereby, several patterns of fraud that improve separation of online shopping transactions into fraudulent and legitimate cases are identified. Thus, results can guide the choice of variables and design of fraud prevention actions and systems in future practical and theoretical work.
期刊介绍:
The International Journal of Electronic Commerce is the leading refereed quarterly devoted to advancing the understanding and practice of electronic commerce. It serves the needs of researchers as well as practitioners and executives involved in electronic commerce. The Journal aims to offer an integrated view of the field by presenting approaches of multiple disciplines.
Electronic commerce is the sharing of business information, maintaining business relationships, and conducting business transactions by digital means over telecommunications networks. The Journal accepts empirical and interpretive submissions that make a significant novel contribution to this field.