残馀多集中年轻图的识别

Pub Date : 2023-03-06 DOI:10.1007/s00026-023-00641-7
Salim Rostam
{"title":"残馀多集中年轻图的识别","authors":"Salim Rostam","doi":"10.1007/s00026-023-00641-7","DOIUrl":null,"url":null,"abstract":"<div><p>To any Young diagram we can associate the multiset of residues of all its nodes. This paper is concerned with the inverse problem: given a multiset of elements of <span>\\(\\mathbb {Z}/e\\mathbb {Z}\\)</span>, does it comes from a Young diagram? We give a full solution in level one and a partial answer in higher levels for Young multidiagrams, using Fayers’s notions of core block and weight of a multipartition. We apply the result in level one to study a shift operation on partitions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-023-00641-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Identifying Young Diagrams Among Residue Multisets\",\"authors\":\"Salim Rostam\",\"doi\":\"10.1007/s00026-023-00641-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To any Young diagram we can associate the multiset of residues of all its nodes. This paper is concerned with the inverse problem: given a multiset of elements of <span>\\\\(\\\\mathbb {Z}/e\\\\mathbb {Z}\\\\)</span>, does it comes from a Young diagram? We give a full solution in level one and a partial answer in higher levels for Young multidiagrams, using Fayers’s notions of core block and weight of a multipartition. We apply the result in level one to study a shift operation on partitions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-023-00641-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00641-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00641-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任何杨图,我们都可以联想到它所有节点的残差多集。本文关注的是反问题:给定一个 \(\mathbb {Z}/e\mathbb {Z}\)的元素多集,它是否来自杨图?我们用费耶斯的核心块概念和多分区的权重概念,给出了杨多图的第一层次的完整解和更高层次的部分答案。我们应用第一层的结果来研究分区上的移位操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Identifying Young Diagrams Among Residue Multisets

To any Young diagram we can associate the multiset of residues of all its nodes. This paper is concerned with the inverse problem: given a multiset of elements of \(\mathbb {Z}/e\mathbb {Z}\), does it comes from a Young diagram? We give a full solution in level one and a partial answer in higher levels for Young multidiagrams, using Fayers’s notions of core block and weight of a multipartition. We apply the result in level one to study a shift operation on partitions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信