{"title":"残馀多集中年轻图的识别","authors":"Salim Rostam","doi":"10.1007/s00026-023-00641-7","DOIUrl":null,"url":null,"abstract":"<div><p>To any Young diagram we can associate the multiset of residues of all its nodes. This paper is concerned with the inverse problem: given a multiset of elements of <span>\\(\\mathbb {Z}/e\\mathbb {Z}\\)</span>, does it comes from a Young diagram? We give a full solution in level one and a partial answer in higher levels for Young multidiagrams, using Fayers’s notions of core block and weight of a multipartition. We apply the result in level one to study a shift operation on partitions.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"28 3","pages":"909 - 960"},"PeriodicalIF":0.6000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-023-00641-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Identifying Young Diagrams Among Residue Multisets\",\"authors\":\"Salim Rostam\",\"doi\":\"10.1007/s00026-023-00641-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To any Young diagram we can associate the multiset of residues of all its nodes. This paper is concerned with the inverse problem: given a multiset of elements of <span>\\\\(\\\\mathbb {Z}/e\\\\mathbb {Z}\\\\)</span>, does it comes from a Young diagram? We give a full solution in level one and a partial answer in higher levels for Young multidiagrams, using Fayers’s notions of core block and weight of a multipartition. We apply the result in level one to study a shift operation on partitions.</p></div>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":\"28 3\",\"pages\":\"909 - 960\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-023-00641-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00641-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00641-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Identifying Young Diagrams Among Residue Multisets
To any Young diagram we can associate the multiset of residues of all its nodes. This paper is concerned with the inverse problem: given a multiset of elements of \(\mathbb {Z}/e\mathbb {Z}\), does it comes from a Young diagram? We give a full solution in level one and a partial answer in higher levels for Young multidiagrams, using Fayers’s notions of core block and weight of a multipartition. We apply the result in level one to study a shift operation on partitions.
期刊介绍:
Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board.
The scope of Annals of Combinatorics is covered by the following three tracks:
Algebraic Combinatorics:
Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices
Analytic and Algorithmic Combinatorics:
Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms
Graphs and Matroids:
Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches