用susy qm方法分析双环振子(drso)和manning-rosen势下6维薛定谔方程的能量和波函数及热力学性质

IF 0.2 Q4 CHEMISTRY, MULTIDISCIPLINARY
Dedy A. Bilaut, A. Suparmi, C. Cari, S. Faniandari
{"title":"用susy qm方法分析双环振子(drso)和manning-rosen势下6维薛定谔方程的能量和波函数及热力学性质","authors":"Dedy A. Bilaut, A. Suparmi, C. Cari, S. Faniandari","doi":"10.52571/ptq.v17.n36.2020.580_periodico36_pgs_565_583.pdf","DOIUrl":null,"url":null,"abstract":"\nThe exact solutions of the Schrodinger equations (SE) in the D-dimensional coordinate system have attracted the attention of many theoretical researchers in branches of quantum physics and quantum chemistry. The energy eigenvalues and the wave function are the solutions of the Schrodinger equation that implicitly represents the behavior of a quantum mechanical system. This study aimed to obtain the eigenvalues, wave functions, and thermodynamic properties of the 6-Dimensional Schrodinger equation under Double Ring-Shaped Oscillator (DRSO) and Manning-Rosen potential. The variable separation method was applied to reduce the one 6-Dimensional Schrodinger equation depending on radial and angular non-central potential into five onedimensional Schrodinger equations: one radial and five angular Schrodinger equations. Each of these onedimensional Schrodinger equations was solved using the SUSY QM method to obtain one eigenvalue and one wave function of the radial part, five eigenvalues, and five angular wave functions angular part. Some thermodynamic properties such, the vibrational mean energy 𝑈, vibrational specific heat 𝐶, vibrational free energy 𝐹, and vibrational entropy 𝑆, were obtained using the radial energy equations. The results showed that except the 𝑛𝑙1, all increment of angular quantum number decreases the energy values. Increments of all potential parameter increase the energy values. Increment of angular quantum number and potentials parameter increases the amplitude and shifts the wave functions to the left. However, the increment of 𝑛𝑙1, 𝛼, 𝜎, and 𝜌 decrease the amplitude and shift wavefunctions to the right. Moreover, the vibrational mean energy 𝑈 and free energy 𝐹 increased as the increasing value of potentials parameters, where the ω parameter has the dominant effect than the other parameters. The vibrational specific heat 𝐶 and entropy 𝑆 affected only by the 𝜔 parameter, where 𝐶 and 𝑆 decreased as the increase of 𝜔.\n","PeriodicalId":45103,"journal":{"name":"Periodico Tche Quimica","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF ENERGY AND WAVE FUNCTIONS AND THE THERMODYNAMICS PROPERTIES OF THE 6-DIMENSIONAL SCHRODINGER EQUATION UNDER DOUBLE RING-SHAPE OSCILLATOR (DRSO) AND MANNING-ROSEN POTENTIALS USING SUSY QM METHOD\",\"authors\":\"Dedy A. Bilaut, A. Suparmi, C. Cari, S. Faniandari\",\"doi\":\"10.52571/ptq.v17.n36.2020.580_periodico36_pgs_565_583.pdf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe exact solutions of the Schrodinger equations (SE) in the D-dimensional coordinate system have attracted the attention of many theoretical researchers in branches of quantum physics and quantum chemistry. The energy eigenvalues and the wave function are the solutions of the Schrodinger equation that implicitly represents the behavior of a quantum mechanical system. This study aimed to obtain the eigenvalues, wave functions, and thermodynamic properties of the 6-Dimensional Schrodinger equation under Double Ring-Shaped Oscillator (DRSO) and Manning-Rosen potential. The variable separation method was applied to reduce the one 6-Dimensional Schrodinger equation depending on radial and angular non-central potential into five onedimensional Schrodinger equations: one radial and five angular Schrodinger equations. Each of these onedimensional Schrodinger equations was solved using the SUSY QM method to obtain one eigenvalue and one wave function of the radial part, five eigenvalues, and five angular wave functions angular part. Some thermodynamic properties such, the vibrational mean energy 𝑈, vibrational specific heat 𝐶, vibrational free energy 𝐹, and vibrational entropy 𝑆, were obtained using the radial energy equations. The results showed that except the 𝑛𝑙1, all increment of angular quantum number decreases the energy values. Increments of all potential parameter increase the energy values. Increment of angular quantum number and potentials parameter increases the amplitude and shifts the wave functions to the left. However, the increment of 𝑛𝑙1, 𝛼, 𝜎, and 𝜌 decrease the amplitude and shift wavefunctions to the right. Moreover, the vibrational mean energy 𝑈 and free energy 𝐹 increased as the increasing value of potentials parameters, where the ω parameter has the dominant effect than the other parameters. The vibrational specific heat 𝐶 and entropy 𝑆 affected only by the 𝜔 parameter, where 𝐶 and 𝑆 decreased as the increase of 𝜔.\\n\",\"PeriodicalId\":45103,\"journal\":{\"name\":\"Periodico Tche Quimica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodico Tche Quimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52571/ptq.v17.n36.2020.580_periodico36_pgs_565_583.pdf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodico Tche Quimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52571/ptq.v17.n36.2020.580_periodico36_pgs_565_583.pdf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

d维坐标系下薛定谔方程的精确解引起了量子物理和量子化学分支理论研究者的广泛关注。能量特征值和波函数是薛定谔方程的解,它隐含地表示了量子力学系统的行为。本研究旨在获得双环振子(DRSO)和Manning-Rosen势下6维薛定谔方程的特征值、波函数和热力学性质。采用变量分离方法,将一个依赖径向和角非中心势的6维薛定谔方程简化为5个一维薛定谔方程:1个径向和5个角薛定谔方程。利用SUSY QM方法求解每一个一维薛定谔方程,得到径向部分的一个特征值和一个波函数,角部分的五个特征值和五个角波函数。利用径向能量方程,得到了振动平均能𝑈、振动比热、振动自由能、振动熵𝑆等热力学性质。结果表明,除𝑛𝑙1外,角量子数的增加均使能量值减小。所有势参数的增加都使能量值增加。角量子数和势参数的增加使振幅增大,波函数向左移动。但是,𝑛𝑙1、rdr、和𝜌的增加会使波函数的幅值和位移向右减小。振动平均能𝑈和自由能均随势参数的增大而增大,其中ω参数的作用强于其他参数。振动比热()和熵()只受𝜔参数的影响,其中,()和(()随𝜔的增大而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALYSIS OF ENERGY AND WAVE FUNCTIONS AND THE THERMODYNAMICS PROPERTIES OF THE 6-DIMENSIONAL SCHRODINGER EQUATION UNDER DOUBLE RING-SHAPE OSCILLATOR (DRSO) AND MANNING-ROSEN POTENTIALS USING SUSY QM METHOD
The exact solutions of the Schrodinger equations (SE) in the D-dimensional coordinate system have attracted the attention of many theoretical researchers in branches of quantum physics and quantum chemistry. The energy eigenvalues and the wave function are the solutions of the Schrodinger equation that implicitly represents the behavior of a quantum mechanical system. This study aimed to obtain the eigenvalues, wave functions, and thermodynamic properties of the 6-Dimensional Schrodinger equation under Double Ring-Shaped Oscillator (DRSO) and Manning-Rosen potential. The variable separation method was applied to reduce the one 6-Dimensional Schrodinger equation depending on radial and angular non-central potential into five onedimensional Schrodinger equations: one radial and five angular Schrodinger equations. Each of these onedimensional Schrodinger equations was solved using the SUSY QM method to obtain one eigenvalue and one wave function of the radial part, five eigenvalues, and five angular wave functions angular part. Some thermodynamic properties such, the vibrational mean energy 𝑈, vibrational specific heat 𝐶, vibrational free energy 𝐹, and vibrational entropy 𝑆, were obtained using the radial energy equations. The results showed that except the 𝑛𝑙1, all increment of angular quantum number decreases the energy values. Increments of all potential parameter increase the energy values. Increment of angular quantum number and potentials parameter increases the amplitude and shifts the wave functions to the left. However, the increment of 𝑛𝑙1, 𝛼, 𝜎, and 𝜌 decrease the amplitude and shift wavefunctions to the right. Moreover, the vibrational mean energy 𝑈 and free energy 𝐹 increased as the increasing value of potentials parameters, where the ω parameter has the dominant effect than the other parameters. The vibrational specific heat 𝐶 and entropy 𝑆 affected only by the 𝜔 parameter, where 𝐶 and 𝑆 decreased as the increase of 𝜔.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodico Tche Quimica
Periodico Tche Quimica CHEMISTRY, MULTIDISCIPLINARY-
自引率
0.00%
发文量
17
期刊介绍: The Journal publishes original research papers, review articles, short communications (scientific publications), book reviews, forum articles, announcements or letters as well as interviews. Researchers from all countries are invited to publish on its pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信