{"title":"氢氧气体(HHO)流量和喷油器穿透对双燃料CI发动机性能影响的研究","authors":"Pravritt Kushwaha, Saleel Ismail","doi":"10.1080/00194506.2022.2048096","DOIUrl":null,"url":null,"abstract":"ABSTRACT Renewable sources of energy help mitigate the environmental concerns associated with fossil fuel combustion and in meeting the ever-increasing energy demand. The use of HHO gas in I.C. Engines becomes promising in this context. HHO gas is a mixture of hydrogen and oxygen in the ratio 2:1, produced by the electrolysis of water. In this research, alkaline electrolysis was used for producing HHO gas using KOH as an electrolyte. This HHO gas was introduced in the intake manifold of the C.I. engine, making it operate in dual-fuel mode. The effects of HHO gas addition on engine performance and emissions were investigated. The variation of diesel injector protrusion (DIP) by +/− 1 mm from its normal position was also studied. This was achieved using washers of varying thicknesses. Three different HHO gas injection locations, namely port, manifold, and upstream, were compared to determine the most suitable position. The simultaneous evaluation of the effects of DIP and HHO injection location makes this study unique. BSFC, peak pressure, HC, CO, CO2 and smoke emissions were observed to be lower, while BTE, NOx and O2 emissions were enhanced for the optimum condition of + 1 mm DIP, PI with 1.63 LPM of HHO gas. GRAPHICAL ABSTRACT","PeriodicalId":13430,"journal":{"name":"Indian Chemical Engineer","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of the effects of oxyhydrogen gas (HHO) flow rate and injector penetration on the performance of a dual fuel CI engine\",\"authors\":\"Pravritt Kushwaha, Saleel Ismail\",\"doi\":\"10.1080/00194506.2022.2048096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Renewable sources of energy help mitigate the environmental concerns associated with fossil fuel combustion and in meeting the ever-increasing energy demand. The use of HHO gas in I.C. Engines becomes promising in this context. HHO gas is a mixture of hydrogen and oxygen in the ratio 2:1, produced by the electrolysis of water. In this research, alkaline electrolysis was used for producing HHO gas using KOH as an electrolyte. This HHO gas was introduced in the intake manifold of the C.I. engine, making it operate in dual-fuel mode. The effects of HHO gas addition on engine performance and emissions were investigated. The variation of diesel injector protrusion (DIP) by +/− 1 mm from its normal position was also studied. This was achieved using washers of varying thicknesses. Three different HHO gas injection locations, namely port, manifold, and upstream, were compared to determine the most suitable position. The simultaneous evaluation of the effects of DIP and HHO injection location makes this study unique. BSFC, peak pressure, HC, CO, CO2 and smoke emissions were observed to be lower, while BTE, NOx and O2 emissions were enhanced for the optimum condition of + 1 mm DIP, PI with 1.63 LPM of HHO gas. GRAPHICAL ABSTRACT\",\"PeriodicalId\":13430,\"journal\":{\"name\":\"Indian Chemical Engineer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Chemical Engineer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00194506.2022.2048096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Chemical Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00194506.2022.2048096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
摘要
摘要可再生能源有助于缓解与化石燃料燃烧相关的环境问题,并满足不断增长的能源需求。在这种情况下,在内燃机中使用HHO气体变得很有前景。HHO气体是氢气和氧气的混合物,比例为2:1,通过电解水产生。在本研究中,以KOH为电解质,采用碱性电解法生产HHO气体。这种HHO气体被引入C.I.发动机的进气歧管,使其在双燃料模式下运行。研究了添加HHO气体对发动机性能和排放的影响。柴油机喷油器突出量(DIP)随+/-的变化 1. 还研究了离其正常位置mm的距离。这是使用不同厚度的垫圈实现的。比较了三种不同的HHO气体注入位置,即端口、歧管和上游,以确定最合适的位置。DIP和HHO注射位置效果的同时评估使本研究具有独特性。BSFC、峰值压力、HC、CO、CO2和烟雾排放量较低,而BTE、NOx和O2排放量在最佳条件下有所增加+ 1. mm DIP、PI和1.63 LPM的HHO气体。图形摘要
Investigation of the effects of oxyhydrogen gas (HHO) flow rate and injector penetration on the performance of a dual fuel CI engine
ABSTRACT Renewable sources of energy help mitigate the environmental concerns associated with fossil fuel combustion and in meeting the ever-increasing energy demand. The use of HHO gas in I.C. Engines becomes promising in this context. HHO gas is a mixture of hydrogen and oxygen in the ratio 2:1, produced by the electrolysis of water. In this research, alkaline electrolysis was used for producing HHO gas using KOH as an electrolyte. This HHO gas was introduced in the intake manifold of the C.I. engine, making it operate in dual-fuel mode. The effects of HHO gas addition on engine performance and emissions were investigated. The variation of diesel injector protrusion (DIP) by +/− 1 mm from its normal position was also studied. This was achieved using washers of varying thicknesses. Three different HHO gas injection locations, namely port, manifold, and upstream, were compared to determine the most suitable position. The simultaneous evaluation of the effects of DIP and HHO injection location makes this study unique. BSFC, peak pressure, HC, CO, CO2 and smoke emissions were observed to be lower, while BTE, NOx and O2 emissions were enhanced for the optimum condition of + 1 mm DIP, PI with 1.63 LPM of HHO gas. GRAPHICAL ABSTRACT