非自治边界柯西问题的稳定性和局部吸引性

IF 0.4 Q4 MATHEMATICS
A. Jerroudi, M. Moussi
{"title":"非自治边界柯西问题的稳定性和局部吸引性","authors":"A. Jerroudi, M. Moussi","doi":"10.5269/bspm.52035","DOIUrl":null,"url":null,"abstract":"In this paper we present results concerning the existence, stability and local attractivity for non-autonomous semilinear boundary Cauchy problems. In our method, we assume certain smoothness properties on the linear part and the local lipshitz continuity on the nonlinear perturbation. We apply our abstract results to population equations.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and local attractivity for non-autonomous boundary Cauchy problems\",\"authors\":\"A. Jerroudi, M. Moussi\",\"doi\":\"10.5269/bspm.52035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present results concerning the existence, stability and local attractivity for non-autonomous semilinear boundary Cauchy problems. In our method, we assume certain smoothness properties on the linear part and the local lipshitz continuity on the nonlinear perturbation. We apply our abstract results to population equations.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一类非自治半线性边界柯西问题的存在性、稳定性和局部吸引性。在我们的方法中,我们假设线性部分具有一定的光滑性,而非线性扰动部分具有局部lipshitz连续性。我们将抽象结果应用于总体方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and local attractivity for non-autonomous boundary Cauchy problems
In this paper we present results concerning the existence, stability and local attractivity for non-autonomous semilinear boundary Cauchy problems. In our method, we assume certain smoothness properties on the linear part and the local lipshitz continuity on the nonlinear perturbation. We apply our abstract results to population equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信