B. Liu, Yuman Che, Ben-hui Shi, Hai-feng Li, Jin-lin Lu
{"title":"风量对炉膛周向热风分布规律的影响","authors":"B. Liu, Yuman Che, Ben-hui Shi, Hai-feng Li, Jin-lin Lu","doi":"10.1515/ijcre-2022-0135","DOIUrl":null,"url":null,"abstract":"Abstract Based on Ansteel’s new No. 5 blast furnace (BF), the distribution rule of hot blast on the circumference of blast furnace hearth under different blast volume was studied. The results show that, the blast volume distribution rule is similar under different blast volumes, that is, there are four regions with large blast volumes at the 0°, 90°, 180° and 270° positions of the bustle pipe. Under different blast volumes, the difference of blast volume near 90° and 270° is close to 0, which has a minor effect on the uneven distribution of gas flow and circumferential asymmetry of packed bed in BF. However, the blast volume of the tuyere near the 180° is always larger than that of the tuyere near 0°, and with the increase of blast volume from 4600 to 5000 nm3/min, this difference keeps increasing, 0.69 to 0.95 nm3/min. This phenomenon will lead to an increase in the coke consumption on the 180° side, and cause a higher descending velocity of coke than that on the 0° side, this difference increases from 0.39 to 0.54 m, which could further result in the unevenness of blast volume distribution and the circumferential asymmetry of packed bed in BF. Comparing with the actual production in Ansteel, the results obtained in this work are in good agreement with the phenomenon in practical production.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"679 - 686"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of blast volume on hot blast distribution rule around the hearth circumferentially\",\"authors\":\"B. Liu, Yuman Che, Ben-hui Shi, Hai-feng Li, Jin-lin Lu\",\"doi\":\"10.1515/ijcre-2022-0135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Based on Ansteel’s new No. 5 blast furnace (BF), the distribution rule of hot blast on the circumference of blast furnace hearth under different blast volume was studied. The results show that, the blast volume distribution rule is similar under different blast volumes, that is, there are four regions with large blast volumes at the 0°, 90°, 180° and 270° positions of the bustle pipe. Under different blast volumes, the difference of blast volume near 90° and 270° is close to 0, which has a minor effect on the uneven distribution of gas flow and circumferential asymmetry of packed bed in BF. However, the blast volume of the tuyere near the 180° is always larger than that of the tuyere near 0°, and with the increase of blast volume from 4600 to 5000 nm3/min, this difference keeps increasing, 0.69 to 0.95 nm3/min. This phenomenon will lead to an increase in the coke consumption on the 180° side, and cause a higher descending velocity of coke than that on the 0° side, this difference increases from 0.39 to 0.54 m, which could further result in the unevenness of blast volume distribution and the circumferential asymmetry of packed bed in BF. Comparing with the actual production in Ansteel, the results obtained in this work are in good agreement with the phenomenon in practical production.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\"21 1\",\"pages\":\"679 - 686\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0135\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Influence of blast volume on hot blast distribution rule around the hearth circumferentially
Abstract Based on Ansteel’s new No. 5 blast furnace (BF), the distribution rule of hot blast on the circumference of blast furnace hearth under different blast volume was studied. The results show that, the blast volume distribution rule is similar under different blast volumes, that is, there are four regions with large blast volumes at the 0°, 90°, 180° and 270° positions of the bustle pipe. Under different blast volumes, the difference of blast volume near 90° and 270° is close to 0, which has a minor effect on the uneven distribution of gas flow and circumferential asymmetry of packed bed in BF. However, the blast volume of the tuyere near the 180° is always larger than that of the tuyere near 0°, and with the increase of blast volume from 4600 to 5000 nm3/min, this difference keeps increasing, 0.69 to 0.95 nm3/min. This phenomenon will lead to an increase in the coke consumption on the 180° side, and cause a higher descending velocity of coke than that on the 0° side, this difference increases from 0.39 to 0.54 m, which could further result in the unevenness of blast volume distribution and the circumferential asymmetry of packed bed in BF. Comparing with the actual production in Ansteel, the results obtained in this work are in good agreement with the phenomenon in practical production.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.