{"title":"印度海产品加工厂食品接触表面分离大肠杆菌的流行、耐药性和分子特征","authors":"B. Francis, A. Antony, D. P. Sukumaran, A. Hatha","doi":"10.18502/jfqhc.9.1.9685","DOIUrl":null,"url":null,"abstract":"Background: The survival of pathogens in biofilms poses a threat to food safety. The aim of this study was to determine prevalence, antimicrobial resistance, and molecular characterization of Escherichia coli strains. \nMethods: Swab samples (n=144) were collected from biofilm formed on food contact surfaces in seafood pre-processing plant in India. E. coli was isolated and identified using uid A gene by Polymerase Chain Reaction (PCR). The risk assessment of the isolates was carried out in terms of their drug resistance and the presence of virulence genes. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Phylogenetic grouping was done by quadruplex PCR. Molecular typing of the strains was performed by Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR). Data were statistically analyzed using SPSS version 22. \nResults: Enteropathogenic E. coli (EPEC) strains were the most prevalent serotype. Multiplex PCR analysis revealed the presence of shiga toxin genes (stx1, stx2), intimin (eae), and enterohemolysin genes (hlyA). Shiga toxin gene stx2 showed the highest prevalence (83.33%). Among various phylogroups, B1 (45.56%) and B2 (30%) were the most prevalent phylogroups. Resistance to ampicillin (85.56%), piperacillin (84.44%), and cefpodoxime (85.56%) was widespread among the E. coli strains. \nConclusion: The presence of genetically heterogeneous multi drug resistant E. coli strains with virulence potential showed a high risk in the seafood industry.","PeriodicalId":37437,"journal":{"name":"Journal of Food Quality and Hazards Control","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prevalence, Antimicrobial Resistance, and Molecular Characterization of Escherichia coli Isolated from Food Contact Surfaces in Seafood Pre-Processing Plants (India)\",\"authors\":\"B. Francis, A. Antony, D. P. Sukumaran, A. Hatha\",\"doi\":\"10.18502/jfqhc.9.1.9685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The survival of pathogens in biofilms poses a threat to food safety. The aim of this study was to determine prevalence, antimicrobial resistance, and molecular characterization of Escherichia coli strains. \\nMethods: Swab samples (n=144) were collected from biofilm formed on food contact surfaces in seafood pre-processing plant in India. E. coli was isolated and identified using uid A gene by Polymerase Chain Reaction (PCR). The risk assessment of the isolates was carried out in terms of their drug resistance and the presence of virulence genes. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Phylogenetic grouping was done by quadruplex PCR. Molecular typing of the strains was performed by Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR). Data were statistically analyzed using SPSS version 22. \\nResults: Enteropathogenic E. coli (EPEC) strains were the most prevalent serotype. Multiplex PCR analysis revealed the presence of shiga toxin genes (stx1, stx2), intimin (eae), and enterohemolysin genes (hlyA). Shiga toxin gene stx2 showed the highest prevalence (83.33%). Among various phylogroups, B1 (45.56%) and B2 (30%) were the most prevalent phylogroups. Resistance to ampicillin (85.56%), piperacillin (84.44%), and cefpodoxime (85.56%) was widespread among the E. coli strains. \\nConclusion: The presence of genetically heterogeneous multi drug resistant E. coli strains with virulence potential showed a high risk in the seafood industry.\",\"PeriodicalId\":37437,\"journal\":{\"name\":\"Journal of Food Quality and Hazards Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Quality and Hazards Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/jfqhc.9.1.9685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Quality and Hazards Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jfqhc.9.1.9685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Prevalence, Antimicrobial Resistance, and Molecular Characterization of Escherichia coli Isolated from Food Contact Surfaces in Seafood Pre-Processing Plants (India)
Background: The survival of pathogens in biofilms poses a threat to food safety. The aim of this study was to determine prevalence, antimicrobial resistance, and molecular characterization of Escherichia coli strains.
Methods: Swab samples (n=144) were collected from biofilm formed on food contact surfaces in seafood pre-processing plant in India. E. coli was isolated and identified using uid A gene by Polymerase Chain Reaction (PCR). The risk assessment of the isolates was carried out in terms of their drug resistance and the presence of virulence genes. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Phylogenetic grouping was done by quadruplex PCR. Molecular typing of the strains was performed by Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR). Data were statistically analyzed using SPSS version 22.
Results: Enteropathogenic E. coli (EPEC) strains were the most prevalent serotype. Multiplex PCR analysis revealed the presence of shiga toxin genes (stx1, stx2), intimin (eae), and enterohemolysin genes (hlyA). Shiga toxin gene stx2 showed the highest prevalence (83.33%). Among various phylogroups, B1 (45.56%) and B2 (30%) were the most prevalent phylogroups. Resistance to ampicillin (85.56%), piperacillin (84.44%), and cefpodoxime (85.56%) was widespread among the E. coli strains.
Conclusion: The presence of genetically heterogeneous multi drug resistant E. coli strains with virulence potential showed a high risk in the seafood industry.
期刊介绍:
Journal of Food Quality and Hazards Control (J. Food Qual. Hazards Control) is an international peer-reviewed quarterly journal that aims at publishing of high quality articles involved in food quality, food hygiene, food safety, and food control which scientists from all over the world may submit their manuscript. This academic journal aims to improve international exchange of new findings and recent developments in all aspects of agricultural and biological sciences. This free of charge journal is published in both online and print forms and welcomes the manuscripts that fulfill the general criteria of novelty and scientific importance. Among the most significant objectives of Journal of Food Quality and Hazards Control are to ensure that the articles reflect a wide range of topics regarding journal scopes; to do a fair, scientific, fast, as well as high quality peer-review process; to provide a wide and diverse geographical coverage of articles around the world; and to publish the articles having a trustable resource of scientific information for the audiences. The types of acceptable submissions include original article, review article, short communication, letter to the editor, case report, editorial, as well as book review. Journal of Food Quality and Hazards Control is an official journal of Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.