基于频率算子和贝叶斯方法的零膨胀数据小面积估计

Q3 Mathematics
K. Sadik, R. Anisa, Euis Aqmaliyah
{"title":"基于频率算子和贝叶斯方法的零膨胀数据小面积估计","authors":"K. Sadik, R. Anisa, Euis Aqmaliyah","doi":"10.22237/jmasm/1582727606","DOIUrl":null,"url":null,"abstract":"The most commonly used method of small area estimation (SAE) is the empirical best linear unbiased prediction method based on a linear mixed model. However, it is not appropriate in the case of the zero-inflated target variable with a mixture of zeros and continuously distributed positive values. Therefore, various model-based SAE methods for zero-inflated data are developed, such as the Frequentist approach and the Bayesian approach. Both approaches are compared with the survey regression (SR) method which ignores the presence of zero-inflation in the data. The results show that the two SAE approaches for zero-inflated data are capable to yield more accurate area mean estimates than the SR method.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"18 1","pages":"2-22"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Area Estimation on Zero-Inflated Data Using Frequentist and Bayesian Approach\",\"authors\":\"K. Sadik, R. Anisa, Euis Aqmaliyah\",\"doi\":\"10.22237/jmasm/1582727606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most commonly used method of small area estimation (SAE) is the empirical best linear unbiased prediction method based on a linear mixed model. However, it is not appropriate in the case of the zero-inflated target variable with a mixture of zeros and continuously distributed positive values. Therefore, various model-based SAE methods for zero-inflated data are developed, such as the Frequentist approach and the Bayesian approach. Both approaches are compared with the survey regression (SR) method which ignores the presence of zero-inflation in the data. The results show that the two SAE approaches for zero-inflated data are capable to yield more accurate area mean estimates than the SR method.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"18 1\",\"pages\":\"2-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1582727606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1582727606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

最常用的小面积估计(SAE)方法是基于线性混合模型的经验最佳线性无偏预测方法。然而,在具有零和连续分布正值的混合的零膨胀目标变量的情况下,这是不合适的。因此,针对零膨胀数据开发了各种基于模型的SAE方法,如Frequencist方法和贝叶斯方法。这两种方法都与调查回归(SR)方法进行了比较,后者忽略了数据中零通货膨胀的存在。结果表明,与SR方法相比,零膨胀数据的两种SAE方法能够产生更准确的面积均值估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small Area Estimation on Zero-Inflated Data Using Frequentist and Bayesian Approach
The most commonly used method of small area estimation (SAE) is the empirical best linear unbiased prediction method based on a linear mixed model. However, it is not appropriate in the case of the zero-inflated target variable with a mixture of zeros and continuously distributed positive values. Therefore, various model-based SAE methods for zero-inflated data are developed, such as the Frequentist approach and the Bayesian approach. Both approaches are compared with the survey regression (SR) method which ignores the presence of zero-inflation in the data. The results show that the two SAE approaches for zero-inflated data are capable to yield more accurate area mean estimates than the SR method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信