线性代数密码问题的一个框架

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Carl Bootland, W. Castryck, Alan Szepieniec, F. Vercauteren
{"title":"线性代数密码问题的一个框架","authors":"Carl Bootland, W. Castryck, Alan Szepieniec, F. Vercauteren","doi":"10.1515/jmc-2019-0032","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a general framework encompassing the main hard problems emerging in lattice-based cryptography, which naturally includes the recently proposed Mersenne prime cryptosystem, but also problems coming from code-based cryptography. The framework allows to easily instantiate new hard problems and to automatically construct plausibly post-quantum secure primitives from them. As a first basic application, we introduce two new hard problems and the corresponding encryption schemes. Concretely, we study generalisations of hard problems such as SIS, LWE and NTRU to free modules over quotients of ℤ[X] by ideals of the form (f, g), where f is a monic polynomial and g ∈ ℤ[X] is a ciphertext modulus coprime to f. For trivial modules (i.e. of rank one), the case f = Xn + 1 and g = q ∈ ℤ>1 corresponds to ring-LWE, ring-SIS and NTRU, while the choices f = Xn – 1 and g = X – 2 essentially cover the recently proposed Mersenne prime cryptosystems. At the other extreme, when considering modules of large rank and letting deg(f) = 1, one recovers the framework of LWE and SIS.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"14 1","pages":"202 - 217"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2019-0032","citationCount":"5","resultStr":"{\"title\":\"A framework for cryptographic problems from linear algebra\",\"authors\":\"Carl Bootland, W. Castryck, Alan Szepieniec, F. Vercauteren\",\"doi\":\"10.1515/jmc-2019-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a general framework encompassing the main hard problems emerging in lattice-based cryptography, which naturally includes the recently proposed Mersenne prime cryptosystem, but also problems coming from code-based cryptography. The framework allows to easily instantiate new hard problems and to automatically construct plausibly post-quantum secure primitives from them. As a first basic application, we introduce two new hard problems and the corresponding encryption schemes. Concretely, we study generalisations of hard problems such as SIS, LWE and NTRU to free modules over quotients of ℤ[X] by ideals of the form (f, g), where f is a monic polynomial and g ∈ ℤ[X] is a ciphertext modulus coprime to f. For trivial modules (i.e. of rank one), the case f = Xn + 1 and g = q ∈ ℤ>1 corresponds to ring-LWE, ring-SIS and NTRU, while the choices f = Xn – 1 and g = X – 2 essentially cover the recently proposed Mersenne prime cryptosystems. At the other extreme, when considering modules of large rank and letting deg(f) = 1, one recovers the framework of LWE and SIS.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"14 1\",\"pages\":\"202 - 217\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2019-0032\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2019-0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2019-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 5

摘要

摘要我们介绍了一个包含基于格的密码学中出现的主要难题的通用框架,其中自然包括最近提出的Mersenne素数密码系统,也包括来自基于代码的密码学的问题。该框架允许轻松地实例化新的难题,并从中自动构建看似合理的后量子安全原语。作为第一个基本应用,我们介绍了两个新的难题和相应的加密方案。具体地,我们研究了SIS、LWE和NTRU等难题对商上自由模的推广ℤ[X] 通过形式为(f,g)的理想,其中f是一个monic多项式,g∈ℤ[X] 是与f互质的密文模。对于平凡模(即秩为一),情况f=Xn+1,g=q∈fℤ>1对应于环LWE、环SIS和NTRU,而选择f=Xn–1和g=X–2基本上涵盖了最近提出的Mersenne素数密码系统。在另一个极端,当考虑大秩的模块并使deg(f)=1时,可以恢复LWE和SIS的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for cryptographic problems from linear algebra
Abstract We introduce a general framework encompassing the main hard problems emerging in lattice-based cryptography, which naturally includes the recently proposed Mersenne prime cryptosystem, but also problems coming from code-based cryptography. The framework allows to easily instantiate new hard problems and to automatically construct plausibly post-quantum secure primitives from them. As a first basic application, we introduce two new hard problems and the corresponding encryption schemes. Concretely, we study generalisations of hard problems such as SIS, LWE and NTRU to free modules over quotients of ℤ[X] by ideals of the form (f, g), where f is a monic polynomial and g ∈ ℤ[X] is a ciphertext modulus coprime to f. For trivial modules (i.e. of rank one), the case f = Xn + 1 and g = q ∈ ℤ>1 corresponds to ring-LWE, ring-SIS and NTRU, while the choices f = Xn – 1 and g = X – 2 essentially cover the recently proposed Mersenne prime cryptosystems. At the other extreme, when considering modules of large rank and letting deg(f) = 1, one recovers the framework of LWE and SIS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Cryptology
Journal of Mathematical Cryptology COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.70
自引率
8.30%
发文量
12
审稿时长
100 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信