{"title":"基于深度学习的非侵入式负荷监测与来自智能电表的低分辨率数据","authors":"Marco Manca, L. Massidda","doi":"10.2478/caim-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract A detailed knowledge of the energy consumption and activation status of the electrical appliances in a house is beneficial for both the user and the energy supplier, improving energy awareness and allowing the implementation of consumption management policies through demand response techniques. Monitoring the consumption of individual appliances is certainly expensive and difficult to implement technically on a large scale, so non-intrusive monitoring techniques have been developed that allow the consumption of appliances to be derived from the sole measurement of the aggregate consumption of a house. However, these methodologies often require additional hardware to be installed in the domestic system to measure total energy consumption with high temporal resolution. In this work we use a deep learning method to disaggregate the low frequency energy signal generated directly by the new generation smart meters deployed in Italy, without the need of additional specific hardware. The performances obtained on two reference datasets are promising and demonstrate the applicability of the proposed approach.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"13 1","pages":"39 - 56"},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep learning based non-intrusive load monitoring with low resolution data from smart meters\",\"authors\":\"Marco Manca, L. Massidda\",\"doi\":\"10.2478/caim-2022-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A detailed knowledge of the energy consumption and activation status of the electrical appliances in a house is beneficial for both the user and the energy supplier, improving energy awareness and allowing the implementation of consumption management policies through demand response techniques. Monitoring the consumption of individual appliances is certainly expensive and difficult to implement technically on a large scale, so non-intrusive monitoring techniques have been developed that allow the consumption of appliances to be derived from the sole measurement of the aggregate consumption of a house. However, these methodologies often require additional hardware to be installed in the domestic system to measure total energy consumption with high temporal resolution. In this work we use a deep learning method to disaggregate the low frequency energy signal generated directly by the new generation smart meters deployed in Italy, without the need of additional specific hardware. The performances obtained on two reference datasets are promising and demonstrate the applicability of the proposed approach.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"13 1\",\"pages\":\"39 - 56\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/caim-2022-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Deep learning based non-intrusive load monitoring with low resolution data from smart meters
Abstract A detailed knowledge of the energy consumption and activation status of the electrical appliances in a house is beneficial for both the user and the energy supplier, improving energy awareness and allowing the implementation of consumption management policies through demand response techniques. Monitoring the consumption of individual appliances is certainly expensive and difficult to implement technically on a large scale, so non-intrusive monitoring techniques have been developed that allow the consumption of appliances to be derived from the sole measurement of the aggregate consumption of a house. However, these methodologies often require additional hardware to be installed in the domestic system to measure total energy consumption with high temporal resolution. In this work we use a deep learning method to disaggregate the low frequency energy signal generated directly by the new generation smart meters deployed in Italy, without the need of additional specific hardware. The performances obtained on two reference datasets are promising and demonstrate the applicability of the proposed approach.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.