{"title":"裂缝成核和扩展速率对裂缝几何形状的影响:来自地质力学建模的见解","authors":"M. Welch, M. Luthje, A. C. Glad","doi":"10.1144/petgeo2018-161","DOIUrl":null,"url":null,"abstract":"We combine a power-law microfracture size distribution function with an expression for fracture propagation rate derived from subcritical fracture propagation theory and linear elastic fracture mechanics, to derive a geomechanically based deterministic model for the growth of a network of layer-bound fractures. This model also simulates fracture termination due to intersection with perpendicular fractures or stress-shadow interaction. We use this model to examine key controls on the emergent geometry of the fracture network. First, we examine the effect of fracture propagation rates. We show that at subcritical fracture propagation rates, the fracture nucleation rate increases with time; this generates a very dense network of very small fractures, similar to the deformation bands generated by compaction in unconsolidated sediments. By contrast, at critical propagation rates, the fracture nucleation rate decreases with time; this generates fewer but much larger fractures, similar to the brittle open fractures generated by tectonic deformation in lithified sediments. We then examine the controls on the rate of growth of the fracture network. A fracture set will start to grow when the stress acting on it reaches a threshold value, and it will continue to grow until all the fractures have stopped propagating and no new fractures can nucleate. The relative timing and rate of growth of the different fracture sets will control the anisotropy of the resulting fracture network: if the sets start to grow at the same time and rate, the result is a fully isotropic fracture network; if the primary fracture set stops growing before the secondary set starts growing, the result is a fully anisotropic fracture network; and if there is some overlap but the secondary set grows more slowly than the primary set, the result is a partially anisotropic fracture network. Although the applied horizontal strain rates are the key control on the relative growth rates of the two fracture sets, we show that the vertical effective stress, the initial horizontal stress, the elastic properties of the rock and the inelastic deformation processes, such as creep, grain sliding and pressure solution, all exert a control on the fracture growth rates, and that more isotropic fracture networks will tend to develop if the vertical effective stress is low or if the fractures are critically stressed prior to the onset of deformation. Thematic collection: This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":"25 1","pages":"470 - 489"},"PeriodicalIF":2.1000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1144/petgeo2018-161","citationCount":"11","resultStr":"{\"title\":\"Influence of fracture nucleation and propagation rates on fracture geometry: insights from geomechanical modelling\",\"authors\":\"M. Welch, M. Luthje, A. C. Glad\",\"doi\":\"10.1144/petgeo2018-161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine a power-law microfracture size distribution function with an expression for fracture propagation rate derived from subcritical fracture propagation theory and linear elastic fracture mechanics, to derive a geomechanically based deterministic model for the growth of a network of layer-bound fractures. This model also simulates fracture termination due to intersection with perpendicular fractures or stress-shadow interaction. We use this model to examine key controls on the emergent geometry of the fracture network. First, we examine the effect of fracture propagation rates. We show that at subcritical fracture propagation rates, the fracture nucleation rate increases with time; this generates a very dense network of very small fractures, similar to the deformation bands generated by compaction in unconsolidated sediments. By contrast, at critical propagation rates, the fracture nucleation rate decreases with time; this generates fewer but much larger fractures, similar to the brittle open fractures generated by tectonic deformation in lithified sediments. We then examine the controls on the rate of growth of the fracture network. A fracture set will start to grow when the stress acting on it reaches a threshold value, and it will continue to grow until all the fractures have stopped propagating and no new fractures can nucleate. The relative timing and rate of growth of the different fracture sets will control the anisotropy of the resulting fracture network: if the sets start to grow at the same time and rate, the result is a fully isotropic fracture network; if the primary fracture set stops growing before the secondary set starts growing, the result is a fully anisotropic fracture network; and if there is some overlap but the secondary set grows more slowly than the primary set, the result is a partially anisotropic fracture network. Although the applied horizontal strain rates are the key control on the relative growth rates of the two fracture sets, we show that the vertical effective stress, the initial horizontal stress, the elastic properties of the rock and the inelastic deformation processes, such as creep, grain sliding and pressure solution, all exert a control on the fracture growth rates, and that more isotropic fracture networks will tend to develop if the vertical effective stress is low or if the fractures are critically stressed prior to the onset of deformation. Thematic collection: This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":\"25 1\",\"pages\":\"470 - 489\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2019-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1144/petgeo2018-161\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2018-161\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2018-161","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of fracture nucleation and propagation rates on fracture geometry: insights from geomechanical modelling
We combine a power-law microfracture size distribution function with an expression for fracture propagation rate derived from subcritical fracture propagation theory and linear elastic fracture mechanics, to derive a geomechanically based deterministic model for the growth of a network of layer-bound fractures. This model also simulates fracture termination due to intersection with perpendicular fractures or stress-shadow interaction. We use this model to examine key controls on the emergent geometry of the fracture network. First, we examine the effect of fracture propagation rates. We show that at subcritical fracture propagation rates, the fracture nucleation rate increases with time; this generates a very dense network of very small fractures, similar to the deformation bands generated by compaction in unconsolidated sediments. By contrast, at critical propagation rates, the fracture nucleation rate decreases with time; this generates fewer but much larger fractures, similar to the brittle open fractures generated by tectonic deformation in lithified sediments. We then examine the controls on the rate of growth of the fracture network. A fracture set will start to grow when the stress acting on it reaches a threshold value, and it will continue to grow until all the fractures have stopped propagating and no new fractures can nucleate. The relative timing and rate of growth of the different fracture sets will control the anisotropy of the resulting fracture network: if the sets start to grow at the same time and rate, the result is a fully isotropic fracture network; if the primary fracture set stops growing before the secondary set starts growing, the result is a fully anisotropic fracture network; and if there is some overlap but the secondary set grows more slowly than the primary set, the result is a partially anisotropic fracture network. Although the applied horizontal strain rates are the key control on the relative growth rates of the two fracture sets, we show that the vertical effective stress, the initial horizontal stress, the elastic properties of the rock and the inelastic deformation processes, such as creep, grain sliding and pressure solution, all exert a control on the fracture growth rates, and that more isotropic fracture networks will tend to develop if the vertical effective stress is low or if the fractures are critically stressed prior to the onset of deformation. Thematic collection: This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.