Zhegalkin多项式的求周期

IF 0.3 Q4 MATHEMATICS, APPLIED
S. Selezneva
{"title":"Zhegalkin多项式的求周期","authors":"S. Selezneva","doi":"10.1515/dma-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract A period of a Boolean function f(x1, …, xn) is a binary n-tuple a = (a1, …, an) that satisfies the identity f(x1 + a1, …, xn + an) = f(x1, …, xn). A Boolean function is periodic if it admits a nonzero period. We propose an algorithm that takes the Zhegalkin polynomial of a Boolean function f(x1, …, xn) as the input and finds a basis of the space of all periods of f(x1, …, xn). The complexity of this algorithm is nO(d), where d is the degree of the function f. As a corollary we show that a basis of the space of all periods of a Boolean function specified by the Zhegalkin polynomial of a bounded degree may be found with complexity which is polynomial in the number of variables.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"129 - 138"},"PeriodicalIF":0.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding periods of Zhegalkin polynomials\",\"authors\":\"S. Selezneva\",\"doi\":\"10.1515/dma-2022-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A period of a Boolean function f(x1, …, xn) is a binary n-tuple a = (a1, …, an) that satisfies the identity f(x1 + a1, …, xn + an) = f(x1, …, xn). A Boolean function is periodic if it admits a nonzero period. We propose an algorithm that takes the Zhegalkin polynomial of a Boolean function f(x1, …, xn) as the input and finds a basis of the space of all periods of f(x1, …, xn). The complexity of this algorithm is nO(d), where d is the degree of the function f. As a corollary we show that a basis of the space of all periods of a Boolean function specified by the Zhegalkin polynomial of a bounded degree may be found with complexity which is polynomial in the number of variables.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"32 1\",\"pages\":\"129 - 138\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2022-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要布尔函数f(x1,…,xn)的周期是二进制n元组A=(a1,…,an),它满足恒等式f(x1+a1,…,xn+an)=f(x1,…,xn)。如果布尔函数允许一个非零周期,那么它就是周期函数。我们提出了一种算法,该算法以布尔函数f(x1,…,xn)的Zhegalkin多项式为输入,并找到f(x1、…、xn)所有周期的空间的基。该算法的复杂度为nO(d),其中d是函数f的次数。作为推论,我们证明了由有界次数的Zhegalkin多项式指定的布尔函数的所有周期的空间的基可以被找到,其复杂度是变量数量的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding periods of Zhegalkin polynomials
Abstract A period of a Boolean function f(x1, …, xn) is a binary n-tuple a = (a1, …, an) that satisfies the identity f(x1 + a1, …, xn + an) = f(x1, …, xn). A Boolean function is periodic if it admits a nonzero period. We propose an algorithm that takes the Zhegalkin polynomial of a Boolean function f(x1, …, xn) as the input and finds a basis of the space of all periods of f(x1, …, xn). The complexity of this algorithm is nO(d), where d is the degree of the function f. As a corollary we show that a basis of the space of all periods of a Boolean function specified by the Zhegalkin polynomial of a bounded degree may be found with complexity which is polynomial in the number of variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信