基于模糊c均值和自适应神经模糊推理系统的机场旅客数量预测

Q1 Mathematics
Sunarsan Sitohang, A. S. Girsang, Suharjito Suharjito
{"title":"基于模糊c均值和自适应神经模糊推理系统的机场旅客数量预测","authors":"Sunarsan Sitohang, A. S. Girsang, Suharjito Suharjito","doi":"10.15866/IREACO.V10I3.12003","DOIUrl":null,"url":null,"abstract":"Airport requires a system to predict the number of passengers as a reference for  airport development planning. In this study, the data used are time series of the number of passengers for eleven years. These data will form patterns which indicate the number of passengers each month in a year as the input data and the number of passengers next year as a target prediction. After the input data are clustered into three types using fuzzy C-means (FCM), the data are processed using adaptive neuro fuzzy inference system (ANFIS) to get the prediction data. The result shows that the “Mean Absolute Percentage Errors (MAPE ) which represent the errors for 4 years are  4.20%, 5.70%, 5.36% and 4.47%  with an average of 4.93% . Based on this result, FCM and ANFIS can be combined to predict the data time series.","PeriodicalId":38433,"journal":{"name":"International Review of Automatic Control","volume":"10 1","pages":"280-287"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prediction of the Number of Airport Passengers Using Fuzzy C-Means and Adaptive Neuro Fuzzy Inference System\",\"authors\":\"Sunarsan Sitohang, A. S. Girsang, Suharjito Suharjito\",\"doi\":\"10.15866/IREACO.V10I3.12003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Airport requires a system to predict the number of passengers as a reference for  airport development planning. In this study, the data used are time series of the number of passengers for eleven years. These data will form patterns which indicate the number of passengers each month in a year as the input data and the number of passengers next year as a target prediction. After the input data are clustered into three types using fuzzy C-means (FCM), the data are processed using adaptive neuro fuzzy inference system (ANFIS) to get the prediction data. The result shows that the “Mean Absolute Percentage Errors (MAPE ) which represent the errors for 4 years are  4.20%, 5.70%, 5.36% and 4.47%  with an average of 4.93% . Based on this result, FCM and ANFIS can be combined to predict the data time series.\",\"PeriodicalId\":38433,\"journal\":{\"name\":\"International Review of Automatic Control\",\"volume\":\"10 1\",\"pages\":\"280-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Automatic Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREACO.V10I3.12003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Automatic Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREACO.V10I3.12003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

机场需要一个系统来预测乘客数量,作为机场发展规划的参考。在这项研究中,使用的数据是11年来乘客数量的时间序列。这些数据将形成模式,将一年中每个月的乘客人数作为输入数据,将明年的乘客人数用作目标预测。在使用模糊C均值(FCM)将输入数据聚类为三种类型后,使用自适应神经模糊推理系统(ANFIS)对数据进行处理以获得预测数据。结果表明,代表4年误差的平均绝对百分比误差(MAPE)分别为4.20%、5.70%、5.36%和4.47%,平均为4.93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the Number of Airport Passengers Using Fuzzy C-Means and Adaptive Neuro Fuzzy Inference System
Airport requires a system to predict the number of passengers as a reference for  airport development planning. In this study, the data used are time series of the number of passengers for eleven years. These data will form patterns which indicate the number of passengers each month in a year as the input data and the number of passengers next year as a target prediction. After the input data are clustered into three types using fuzzy C-means (FCM), the data are processed using adaptive neuro fuzzy inference system (ANFIS) to get the prediction data. The result shows that the “Mean Absolute Percentage Errors (MAPE ) which represent the errors for 4 years are  4.20%, 5.70%, 5.36% and 4.47%  with an average of 4.93% . Based on this result, FCM and ANFIS can be combined to predict the data time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Review of Automatic Control
International Review of Automatic Control Engineering-Control and Systems Engineering
CiteScore
2.70
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信