{"title":"具有种子库的空间种群:有限系统方案","authors":"A. Greven, F. Hollander","doi":"10.1214/23-ejp974","DOIUrl":null,"url":null,"abstract":"We consider a system of interacting Fisher-Wright diffusions with seed-bank. Individuals carry type one of two types, live in colonies, and are subject to resampling and migration as long as they are active. Each colony has a structured seed-bank into which individuals can retreat to become dormant, suspending their resampling and migration until they become active again. As geographic space labelling the colonies we consider a countable Abelian group endowed with the discrete topology. In earlier work we showed that the system has a one-parameter family of equilibria controlled by the relative density of the two types. Moreover, these equilibria exhibit a dichotomy of coexistence (= locally multi-type equilibrium) versus clustering (= locally mono-type equilibrium). We identified the parameter regimes for which these two phases occur, and found that these regimes are different when the mean wake-up time of a dormant individual is finite or infinite. The goal of the present paper is to establish the finite-systems scheme, i.e., identify how a finite truncation of the system (both in the geographic space and in the seed-bank) behaves as both the time and the truncation level tend to infinity, properly tuned together. If the wake-up time has finite mean, then there is a single universality class for the scaling limit. On the other hand, if the wake-up time has infinite mean, then there are two universality classes depending on how fast the truncation level of the seed-bank grows compared to the truncation level of the geographic space.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spatial populations with seed-bank: finite-systems scheme\",\"authors\":\"A. Greven, F. Hollander\",\"doi\":\"10.1214/23-ejp974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a system of interacting Fisher-Wright diffusions with seed-bank. Individuals carry type one of two types, live in colonies, and are subject to resampling and migration as long as they are active. Each colony has a structured seed-bank into which individuals can retreat to become dormant, suspending their resampling and migration until they become active again. As geographic space labelling the colonies we consider a countable Abelian group endowed with the discrete topology. In earlier work we showed that the system has a one-parameter family of equilibria controlled by the relative density of the two types. Moreover, these equilibria exhibit a dichotomy of coexistence (= locally multi-type equilibrium) versus clustering (= locally mono-type equilibrium). We identified the parameter regimes for which these two phases occur, and found that these regimes are different when the mean wake-up time of a dormant individual is finite or infinite. The goal of the present paper is to establish the finite-systems scheme, i.e., identify how a finite truncation of the system (both in the geographic space and in the seed-bank) behaves as both the time and the truncation level tend to infinity, properly tuned together. If the wake-up time has finite mean, then there is a single universality class for the scaling limit. On the other hand, if the wake-up time has infinite mean, then there are two universality classes depending on how fast the truncation level of the seed-bank grows compared to the truncation level of the geographic space.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp974\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp974","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Spatial populations with seed-bank: finite-systems scheme
We consider a system of interacting Fisher-Wright diffusions with seed-bank. Individuals carry type one of two types, live in colonies, and are subject to resampling and migration as long as they are active. Each colony has a structured seed-bank into which individuals can retreat to become dormant, suspending their resampling and migration until they become active again. As geographic space labelling the colonies we consider a countable Abelian group endowed with the discrete topology. In earlier work we showed that the system has a one-parameter family of equilibria controlled by the relative density of the two types. Moreover, these equilibria exhibit a dichotomy of coexistence (= locally multi-type equilibrium) versus clustering (= locally mono-type equilibrium). We identified the parameter regimes for which these two phases occur, and found that these regimes are different when the mean wake-up time of a dormant individual is finite or infinite. The goal of the present paper is to establish the finite-systems scheme, i.e., identify how a finite truncation of the system (both in the geographic space and in the seed-bank) behaves as both the time and the truncation level tend to infinity, properly tuned together. If the wake-up time has finite mean, then there is a single universality class for the scaling limit. On the other hand, if the wake-up time has infinite mean, then there are two universality classes depending on how fast the truncation level of the seed-bank grows compared to the truncation level of the geographic space.
期刊介绍:
The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.
Both ECP and EJP are official journals of the Institute of Mathematical Statistics
and the Bernoulli society.