{"title":"在斯皮尔曼脚的下界","authors":"S. Fuchs, Yann McCord","doi":"10.1515/demo-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract Úbeda-Flores showed that the range of multivariate Spearman’s footrule for copulas of dimension d ≥ 2 is contained in the interval [−1/d, 1], that the upper bound is attained exclusively by the upper Fréchet-Hoeffding bound, and that the lower bound is sharp in the case where d = 2. The present paper provides characterizations of the copulas attaining the lower bound of multivariate Spearman’s footrule in terms of the copula measure but also via the copula’s diagonal section.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"126 - 132"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0005","citationCount":"5","resultStr":"{\"title\":\"On the lower bound of Spearman’s footrule\",\"authors\":\"S. Fuchs, Yann McCord\",\"doi\":\"10.1515/demo-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Úbeda-Flores showed that the range of multivariate Spearman’s footrule for copulas of dimension d ≥ 2 is contained in the interval [−1/d, 1], that the upper bound is attained exclusively by the upper Fréchet-Hoeffding bound, and that the lower bound is sharp in the case where d = 2. The present paper provides characterizations of the copulas attaining the lower bound of multivariate Spearman’s footrule in terms of the copula measure but also via the copula’s diagonal section.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"7 1\",\"pages\":\"126 - 132\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2019-0005\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Abstract Úbeda-Flores showed that the range of multivariate Spearman’s footrule for copulas of dimension d ≥ 2 is contained in the interval [−1/d, 1], that the upper bound is attained exclusively by the upper Fréchet-Hoeffding bound, and that the lower bound is sharp in the case where d = 2. The present paper provides characterizations of the copulas attaining the lower bound of multivariate Spearman’s footrule in terms of the copula measure but also via the copula’s diagonal section.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations