分数(3+1)维修正zakharov-kuznetsov方程的非线性动力学行为

IF 3.3 3区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Kangkang Wang, Peng Xu, Feng Shi
{"title":"分数(3+1)维修正zakharov-kuznetsov方程的非线性动力学行为","authors":"Kangkang Wang, Peng Xu, Feng Shi","doi":"10.1142/s0218348x23500883","DOIUrl":null,"url":null,"abstract":"This paper derives a new fractional (3+1)-dimensional modified Zakharov–Kuznetsov equation based on the conformable fractional derivative for the first time. Some new types of the fractal traveling wave solutions are successfully constructed by applying a novel approach which is called the fractal semi-inverse variational method. To our knowledge, the obtained results are all new and have not reported in the other literature. In addition, the dynamic characteristics of the different solutions on the fractal space are discussed and presented via the 3D plots, 2D contour and 2D curves. It can be found that: (1) The fractal order can not only affect the peak value of the fractal traveling waves, but also affect the wave structures, that is, the smaller the fractional order value is, the more curved the waveform is, and the slower waveform changes. (2) In the fractal space, the fractal wave keeps its shape unchanged in the process of the propagation and still meets the energy conservation. The methods in this paper can be used to study the other fractal PDEs in the physics, and the findings are expected to bring some new thinking and inspiration toward the fractal theory in physics.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"NONLINEAR DYNAMIC BEHAVIORS OF THE FRACTIONAL (3+1)-DIMENSIONAL MODIFIED ZAKHAROV–KUZNETSOV EQUATION\",\"authors\":\"Kangkang Wang, Peng Xu, Feng Shi\",\"doi\":\"10.1142/s0218348x23500883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper derives a new fractional (3+1)-dimensional modified Zakharov–Kuznetsov equation based on the conformable fractional derivative for the first time. Some new types of the fractal traveling wave solutions are successfully constructed by applying a novel approach which is called the fractal semi-inverse variational method. To our knowledge, the obtained results are all new and have not reported in the other literature. In addition, the dynamic characteristics of the different solutions on the fractal space are discussed and presented via the 3D plots, 2D contour and 2D curves. It can be found that: (1) The fractal order can not only affect the peak value of the fractal traveling waves, but also affect the wave structures, that is, the smaller the fractional order value is, the more curved the waveform is, and the slower waveform changes. (2) In the fractal space, the fractal wave keeps its shape unchanged in the process of the propagation and still meets the energy conservation. The methods in this paper can be used to study the other fractal PDEs in the physics, and the findings are expected to bring some new thinking and inspiration toward the fractal theory in physics.\",\"PeriodicalId\":55144,\"journal\":{\"name\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23500883\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218348x23500883","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 7

摘要

本文首次基于可调分数阶导数导出了一个新的分数(3+1)维修正Zakharov-Kuznetsov方程。应用分形半逆变分方法,成功地构造了几种新的分形行波解。据我们所知,所获得的结果都是新的,并没有在其他文献报道。此外,还讨论了不同解在分形空间上的动态特性,并通过三维图、二维轮廓线和二维曲线进行了描述。可以发现:(1)分形阶数不仅可以影响分形行波的峰值,还可以影响波的结构,即分数阶数越小,波形越弯曲,波形变化越慢。(2)在分形空间中,分形波在传播过程中保持形状不变,仍然满足能量守恒。本文的方法可用于物理中其他分形偏微分方程的研究,研究结果有望对物理中的分形理论带来一些新的思考和启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NONLINEAR DYNAMIC BEHAVIORS OF THE FRACTIONAL (3+1)-DIMENSIONAL MODIFIED ZAKHAROV–KUZNETSOV EQUATION
This paper derives a new fractional (3+1)-dimensional modified Zakharov–Kuznetsov equation based on the conformable fractional derivative for the first time. Some new types of the fractal traveling wave solutions are successfully constructed by applying a novel approach which is called the fractal semi-inverse variational method. To our knowledge, the obtained results are all new and have not reported in the other literature. In addition, the dynamic characteristics of the different solutions on the fractal space are discussed and presented via the 3D plots, 2D contour and 2D curves. It can be found that: (1) The fractal order can not only affect the peak value of the fractal traveling waves, but also affect the wave structures, that is, the smaller the fractional order value is, the more curved the waveform is, and the slower waveform changes. (2) In the fractal space, the fractal wave keeps its shape unchanged in the process of the propagation and still meets the energy conservation. The methods in this paper can be used to study the other fractal PDEs in the physics, and the findings are expected to bring some new thinking and inspiration toward the fractal theory in physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
23.40%
发文量
319
审稿时长
>12 weeks
期刊介绍: The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes. Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality. The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信