离散随机Schrödinger算子谱的空间条件

IF 1 3区 数学 Q1 MATHEMATICS
P. Lamarre, Promit Ghosal, Yuchen Liao
{"title":"离散随机Schrödinger算子谱的空间条件","authors":"P. Lamarre, Promit Ghosal, Yuchen Liao","doi":"10.4171/jst/415","DOIUrl":null,"url":null,"abstract":"Consider a random Schr\\\"odinger-type operator of the form $H:=-H_X+V+\\xi$ acting on a general graph $\\mathscr G=(\\mathscr V,\\mathscr E)$, where $H_X$ is the generator of a Markov process $X$ on $\\mathscr G$, $V$ is a deterministic potential with sufficient growth (so that $H$ has a purely discrete spectrum), and $\\xi$ is a random noise with at-most-exponential tails. We prove that $H$'s eigenvalue point process is number rigid in the sense of Ghosh and Peres (Duke Math. J. 166 (2017), no. 10, 1789--1858); that is, the number of eigenvalues in any bounded domain $B\\subset\\mathbb C$ is determined by the configuration of eigenvalues outside of $B$. Our general setting allows to treat cases where $X$ could be non-symmetric (hence $H$ is non-self-adjoint) and $\\xi$ has long-range dependence. Our strategy of proof consists of controlling the variance of the trace of the semigroup $\\mathrm e^{-t H}$ using the Feynman-Kac formula.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On spatial conditioning of the spectrum of discrete Random Schrödinger operators\",\"authors\":\"P. Lamarre, Promit Ghosal, Yuchen Liao\",\"doi\":\"10.4171/jst/415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a random Schr\\\\\\\"odinger-type operator of the form $H:=-H_X+V+\\\\xi$ acting on a general graph $\\\\mathscr G=(\\\\mathscr V,\\\\mathscr E)$, where $H_X$ is the generator of a Markov process $X$ on $\\\\mathscr G$, $V$ is a deterministic potential with sufficient growth (so that $H$ has a purely discrete spectrum), and $\\\\xi$ is a random noise with at-most-exponential tails. We prove that $H$'s eigenvalue point process is number rigid in the sense of Ghosh and Peres (Duke Math. J. 166 (2017), no. 10, 1789--1858); that is, the number of eigenvalues in any bounded domain $B\\\\subset\\\\mathbb C$ is determined by the configuration of eigenvalues outside of $B$. Our general setting allows to treat cases where $X$ could be non-symmetric (hence $H$ is non-self-adjoint) and $\\\\xi$ has long-range dependence. Our strategy of proof consists of controlling the variance of the trace of the semigroup $\\\\mathrm e^{-t H}$ using the Feynman-Kac formula.\",\"PeriodicalId\":48789,\"journal\":{\"name\":\"Journal of Spectral Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jst/415\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/415","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个形式为$H:=-H_X+V+\neneneba xi$的随机Schr“odinger-型算子作用于一般图$\mathscr G=(\mathscrV,\mathscrE)$,其中$H_X$是$\mathcrG$上的马尔可夫过程$X$的生成器,$V$是具有足够增长的确定势(因此$H$具有纯离散谱),并且$\neneneba xi$是具有最多指数尾的随机噪声。我们证明了$H$的特征值点过程在Ghosh和Peres意义上是数刚性的(Duke Math.J.166(2017),no.101789-1858);也就是说,任何有界域$B\subet\mathbb C$中的特征值的个数由$B$外的特征值配置决定。我们的一般设置允许治疗$X$可能是非对称的(因此$H$是非自伴的)和$\neneneba xi$具有长期依赖性的情况。我们的证明策略包括使用Feynman-Kac公式控制半群$\mathrm e^{-tH}$的迹的方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On spatial conditioning of the spectrum of discrete Random Schrödinger operators
Consider a random Schr\"odinger-type operator of the form $H:=-H_X+V+\xi$ acting on a general graph $\mathscr G=(\mathscr V,\mathscr E)$, where $H_X$ is the generator of a Markov process $X$ on $\mathscr G$, $V$ is a deterministic potential with sufficient growth (so that $H$ has a purely discrete spectrum), and $\xi$ is a random noise with at-most-exponential tails. We prove that $H$'s eigenvalue point process is number rigid in the sense of Ghosh and Peres (Duke Math. J. 166 (2017), no. 10, 1789--1858); that is, the number of eigenvalues in any bounded domain $B\subset\mathbb C$ is determined by the configuration of eigenvalues outside of $B$. Our general setting allows to treat cases where $X$ could be non-symmetric (hence $H$ is non-self-adjoint) and $\xi$ has long-range dependence. Our strategy of proof consists of controlling the variance of the trace of the semigroup $\mathrm e^{-t H}$ using the Feynman-Kac formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Theory
Journal of Spectral Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
0.00%
发文量
30
期刊介绍: The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome. The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory. Schrödinger operators, scattering theory and resonances; eigenvalues: perturbation theory, asymptotics and inequalities; quantum graphs, graph Laplacians; pseudo-differential operators and semi-classical analysis; random matrix theory; the Anderson model and other random media; non-self-adjoint matrices and operators, including Toeplitz operators; spectral geometry, including manifolds and automorphic forms; linear and nonlinear differential operators, especially those arising in geometry and physics; orthogonal polynomials; inverse problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信