预分区自适应化学方法对二次动力学过程的有效处理

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
Pushan Sharma, A. Newale, P. Pepiot
{"title":"预分区自适应化学方法对二次动力学过程的有效处理","authors":"Pushan Sharma, A. Newale, P. Pepiot","doi":"10.1080/13647830.2022.2111275","DOIUrl":null,"url":null,"abstract":"Probability Density Function (PDF) methods, which allow for the direct integration of chemical kinetics, are well established to accurately simulate turbulent flames with strong turbulence-chemistry interactions. While adaptive chemistry techniques have been proven effective in reducing the high CPU cost and memory requirements associated with the handling of chemistry in such simulations, performance metrics have mostly been focussed on the primary oxidation pathways converting fuel to major products. In contrast, this work investigates the ability of adaptive techniques, in this case, the pre-partitioned adaptive chemistry (PPAC) approach, to handle secondary kinetics pathways that are parallel, but tightly coupled to the main oxidation process, taking formation as a case study. PPAC relies on a partitioning of the composition space into a user-specified number of regions, on which specialised reduced models are generated using the Directed Relation Graph with Error Propagation (DRGEP) reduction technique. The direct application of that methodology to a mix of hydrocarbon oxidation and nitrogen-related targets is shown to yield excessively detailed region-specific reduced mechanisms in order to properly capture both the main oxidation and the secondary formation processes, thereby decreasing the benefits of the adaptive approach. To address this issue, a sequential approach is proposed for the generation of the region-specific reduced mechanisms, in which the primary combustion pathways relevant for each region are identified first, followed by the selective addition, directly at the reduced level, of any secondary pathways relevant for that region using a recently developed build-up technique. This new strategy is assessed in the context of propane combustion in a partially stirred reactor (PaSR) and methane combustion in the Sandia Flame D configuration, demonstrating in both cases the benefits of the sequential approach for reduced model generation.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":"26 1","pages":"1098 - 1113"},"PeriodicalIF":1.9000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient treatment of secondary kinetic processes for pre-partitioned adaptive chemistry approaches\",\"authors\":\"Pushan Sharma, A. Newale, P. Pepiot\",\"doi\":\"10.1080/13647830.2022.2111275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probability Density Function (PDF) methods, which allow for the direct integration of chemical kinetics, are well established to accurately simulate turbulent flames with strong turbulence-chemistry interactions. While adaptive chemistry techniques have been proven effective in reducing the high CPU cost and memory requirements associated with the handling of chemistry in such simulations, performance metrics have mostly been focussed on the primary oxidation pathways converting fuel to major products. In contrast, this work investigates the ability of adaptive techniques, in this case, the pre-partitioned adaptive chemistry (PPAC) approach, to handle secondary kinetics pathways that are parallel, but tightly coupled to the main oxidation process, taking formation as a case study. PPAC relies on a partitioning of the composition space into a user-specified number of regions, on which specialised reduced models are generated using the Directed Relation Graph with Error Propagation (DRGEP) reduction technique. The direct application of that methodology to a mix of hydrocarbon oxidation and nitrogen-related targets is shown to yield excessively detailed region-specific reduced mechanisms in order to properly capture both the main oxidation and the secondary formation processes, thereby decreasing the benefits of the adaptive approach. To address this issue, a sequential approach is proposed for the generation of the region-specific reduced mechanisms, in which the primary combustion pathways relevant for each region are identified first, followed by the selective addition, directly at the reduced level, of any secondary pathways relevant for that region using a recently developed build-up technique. This new strategy is assessed in the context of propane combustion in a partially stirred reactor (PaSR) and methane combustion in the Sandia Flame D configuration, demonstrating in both cases the benefits of the sequential approach for reduced model generation.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":\"26 1\",\"pages\":\"1098 - 1113\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2022.2111275\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2022.2111275","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

概率密度函数(PDF)方法,允许化学动力学的直接集成,很好地建立了精确模拟湍流火焰强湍流-化学相互作用。虽然自适应化学技术已被证明可以有效地降低与此类模拟中化学处理相关的高CPU成本和内存需求,但性能指标主要集中在将燃料转化为主要产品的主要氧化途径上。相比之下,本研究调查了自适应技术的能力,在这种情况下,预分割自适应化学(PPAC)方法,以形成为例,处理平行的,但与主要氧化过程紧密耦合的二级动力学途径。PPAC依赖于将组合空间划分为用户指定数量的区域,在这些区域上使用带有错误传播的有向关系图(DRGEP)约简技术生成专门的约简模型。将该方法直接应用于碳氢化合物氧化和氮相关目标的混合,会产生过于详细的区域特异性还原机制,从而无法正确捕获主要氧化和次级形成过程,从而降低了适应性方法的好处。为了解决这个问题,提出了一种顺序方法来生成特定区域的还原机制,其中首先确定与每个区域相关的主要燃烧途径,然后使用最近开发的构建技术直接在还原水平上选择性地添加与该区域相关的任何次要途径。在部分搅拌反应器(PaSR)中的丙烷燃烧和Sandia Flame D配置中的甲烷燃烧的背景下,对这种新策略进行了评估,在这两种情况下,都证明了顺序方法减少模型生成的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient treatment of secondary kinetic processes for pre-partitioned adaptive chemistry approaches
Probability Density Function (PDF) methods, which allow for the direct integration of chemical kinetics, are well established to accurately simulate turbulent flames with strong turbulence-chemistry interactions. While adaptive chemistry techniques have been proven effective in reducing the high CPU cost and memory requirements associated with the handling of chemistry in such simulations, performance metrics have mostly been focussed on the primary oxidation pathways converting fuel to major products. In contrast, this work investigates the ability of adaptive techniques, in this case, the pre-partitioned adaptive chemistry (PPAC) approach, to handle secondary kinetics pathways that are parallel, but tightly coupled to the main oxidation process, taking formation as a case study. PPAC relies on a partitioning of the composition space into a user-specified number of regions, on which specialised reduced models are generated using the Directed Relation Graph with Error Propagation (DRGEP) reduction technique. The direct application of that methodology to a mix of hydrocarbon oxidation and nitrogen-related targets is shown to yield excessively detailed region-specific reduced mechanisms in order to properly capture both the main oxidation and the secondary formation processes, thereby decreasing the benefits of the adaptive approach. To address this issue, a sequential approach is proposed for the generation of the region-specific reduced mechanisms, in which the primary combustion pathways relevant for each region are identified first, followed by the selective addition, directly at the reduced level, of any secondary pathways relevant for that region using a recently developed build-up technique. This new strategy is assessed in the context of propane combustion in a partially stirred reactor (PaSR) and methane combustion in the Sandia Flame D configuration, demonstrating in both cases the benefits of the sequential approach for reduced model generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion Theory and Modelling
Combustion Theory and Modelling 工程技术-工程:化工
CiteScore
3.00
自引率
7.70%
发文量
38
审稿时长
6 months
期刊介绍: Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信