W. Rampen, D. Dumnov, Jamie Taylor, Henry Dodson, J. Hutcheson, N. Caldwell
{"title":"一种数字位移静压风力发电机传动系统","authors":"W. Rampen, D. Dumnov, Jamie Taylor, Henry Dodson, J. Hutcheson, N. Caldwell","doi":"10.13052/IJFP1439-9776.2213","DOIUrl":null,"url":null,"abstract":"In 1984 a hydrostatic wind-turbine transmission with ‘secondary control’ was proposed by Stephen Salter using the, then only conceptual, Digital Displacement® (DD) principle for controlling the flow of the primary, rotor-driven, ring-cam pump. This transmission ‘could achieve the correct ratio of tip-speed to wind-speed in conjunction with true synchronous generation’. \nIn the following years DD machines were progressively developed. To start with they were relatively small in capacity but the power ratings were systematically increased, until it seemed that a high-power hydrostatic wind-turbine transmission might indeed be feasible. In 2006, Artemis Intelligent Power (Artemis), a company that had been formed from Salter's original university team, began working on a megawatt-scale, hydrostatic, wind-turbine transmission based on new pump and motor designs. In 2011 Artemis completed a 1.5 MW transmission and dynamometer test-rig. This was one of the largest hydraulic transmissions ever made and, with a shaft-to-shaft efficiency of 93%, one of the most efficient. Using secondary control to respond rapidly to gusting wind and to instantaneous grid faults, it was also the most controllable. This paper discusses the design of the transmission and test-rig and presents the results of steady-state efficiency tests. Subsequent papers will describe systematic experimental work to account for the various energy losses and to develop a comprehensive simulation model of the DD wind-transmission.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"87–112-87–112"},"PeriodicalIF":0.7000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Digital Displacement Hydrostatic Wind-turbine Transmission\",\"authors\":\"W. Rampen, D. Dumnov, Jamie Taylor, Henry Dodson, J. Hutcheson, N. Caldwell\",\"doi\":\"10.13052/IJFP1439-9776.2213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1984 a hydrostatic wind-turbine transmission with ‘secondary control’ was proposed by Stephen Salter using the, then only conceptual, Digital Displacement® (DD) principle for controlling the flow of the primary, rotor-driven, ring-cam pump. This transmission ‘could achieve the correct ratio of tip-speed to wind-speed in conjunction with true synchronous generation’. \\nIn the following years DD machines were progressively developed. To start with they were relatively small in capacity but the power ratings were systematically increased, until it seemed that a high-power hydrostatic wind-turbine transmission might indeed be feasible. In 2006, Artemis Intelligent Power (Artemis), a company that had been formed from Salter's original university team, began working on a megawatt-scale, hydrostatic, wind-turbine transmission based on new pump and motor designs. In 2011 Artemis completed a 1.5 MW transmission and dynamometer test-rig. This was one of the largest hydraulic transmissions ever made and, with a shaft-to-shaft efficiency of 93%, one of the most efficient. Using secondary control to respond rapidly to gusting wind and to instantaneous grid faults, it was also the most controllable. This paper discusses the design of the transmission and test-rig and presents the results of steady-state efficiency tests. Subsequent papers will describe systematic experimental work to account for the various energy losses and to develop a comprehensive simulation model of the DD wind-transmission.\",\"PeriodicalId\":13977,\"journal\":{\"name\":\"International Journal of Fluid Power\",\"volume\":\"1 1\",\"pages\":\"87–112-87–112\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/IJFP1439-9776.2213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/IJFP1439-9776.2213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A Digital Displacement Hydrostatic Wind-turbine Transmission
In 1984 a hydrostatic wind-turbine transmission with ‘secondary control’ was proposed by Stephen Salter using the, then only conceptual, Digital Displacement® (DD) principle for controlling the flow of the primary, rotor-driven, ring-cam pump. This transmission ‘could achieve the correct ratio of tip-speed to wind-speed in conjunction with true synchronous generation’.
In the following years DD machines were progressively developed. To start with they were relatively small in capacity but the power ratings were systematically increased, until it seemed that a high-power hydrostatic wind-turbine transmission might indeed be feasible. In 2006, Artemis Intelligent Power (Artemis), a company that had been formed from Salter's original university team, began working on a megawatt-scale, hydrostatic, wind-turbine transmission based on new pump and motor designs. In 2011 Artemis completed a 1.5 MW transmission and dynamometer test-rig. This was one of the largest hydraulic transmissions ever made and, with a shaft-to-shaft efficiency of 93%, one of the most efficient. Using secondary control to respond rapidly to gusting wind and to instantaneous grid faults, it was also the most controllable. This paper discusses the design of the transmission and test-rig and presents the results of steady-state efficiency tests. Subsequent papers will describe systematic experimental work to account for the various energy losses and to develop a comprehensive simulation model of the DD wind-transmission.